
Acquisition of a Dense 3D Model Database for Robotic Vision

Muhammad Zeeshan Zia, Ulrich Klank, and Michael Beetz

Abstract— Service Robots in real world environments need
to have computer vision capability for detecting a large class
of objects. We discuss how freely available 3D model databases
can be used to enable robots to know the appearance of a
wide variety of objects in human environments with special
application to our Assistive Kitchen. However, the open and
free nature of such databases pose problems for example
the presence of incorrectly annotated 3D models, or objects
for which very few models exist online. We have previously
proposed techniques to automatically select the useful models
from the search result, and utilizing such models to perform
simple manipulation tasks. Here, we build upon that work, to
describe a technique based on Morphing to form new 3D models
if we only have a few models corresponding to a label. However,
morphing in computer graphics requires a human operator
and is computationally burdensome, due to which we present
our own automatic morphing technique. We also present a
simple technique to speed the matching process of 3D models
against real scenes using Visibility culling. This technique can
potentially speed-up the matching process by 2-3 times while
using less memory, if we have some prior information model
and world pose.

I. INTRODUCTION

For intelligent service robots to make their way into
widespread use, computer vision capabilities are needed to
detect many different classes of objects. These object classes,
for example cups, pots, spoons themselves have members
that vary widely in their appearance. Thus, it is very hard
to train robots to recognize even a small subset of objects
present in a human environment. One possible solution for
this is proposed in our previous work [1], where we present
how public 3D model databases available on the internet can
be used to obtain various annotated 3D models given abstract
instructions. Here we extend those techniques to allow new
models to be generated (using morphing) when very few
models of a given class are available and utilize a technique
called visibility culling from 3D game design to speed up
the matching process against a real scene.

Moreover, usually a service robot’s task will not end at
just detecting the presence of an object but also involve
manipulating the object. For this task, 3D models provide
an opportunity for the robot to have complete information
about the hidden geometry of the object, which can result
in efficient manipulation. Thus such models allow the robot
to not only localize the objects in the real world but also
guess their weight, center of mass and good grasping points.

This work was supported by MVTec Software GmbH, München and by
the cluster of excellence Cognitive Technical Systems (CoTeSys).

M. Z. Zia, U. Klank and M. Beetz are with the Intelligent Au-
tonomous Systems (IAS) group, Technische Universität München, Boltz-
mannstr. 3, 85748 Garching bei München {zia, klank, beetz}
@in.tum.de

Fig. 1. Multiple views of a 3D mug model matched against a scene. A
few views of this model are shown for illustrative purposes.

We have developed this system keeping in particular view
the needs of our Assistive Kitchen environment [2]. Fig. 1
shows a scene where two cups were localized using a 3D
mug model obtained from the internet.

We propose an automatic integrated robot object recogni-
tion system whose operation takes place as follows:

1) The robot is given abstract instructions, out of which
it extracts names of objects.

2) It searches for geometric 3D object models annotated
with these names from an open online database (in our
case, Google’s 3D Warehouse) and downloads them.

3) Due to the open nature of such databases, every
search usually returns some garbage models also. Thus
we apply a classification algorithm to select the best
models automatically.

4) If only few models are available, new 3D models
are created by scaling/registering the models and then
performing automatic morphing. It must be empha-
sized that this whole process takes place completely
automatically, whereas usually morphing algorithms
require significant input from a human operator.

5) For making the later matching step efficient the sys-
tem reduces the model’s complexity based on context
information

6) Given these models which do not contain accurate
size information, the robot looks for objects in the
environment matching these to a sufficient extent.

7) The robot presents the objects it has found together
with their class labels and the specialized 3D models
computed in the last step in order to get them approved
by the robot programmer.

8) Upon approval of the object labels and models the ob-
ject recognition system computes appearance descrip-
tions using environment tailored feature that enable

visual popout mechanisms in cluttered scene as well
as accurate localization using model knowledge.

II. RELATED WORK

Our objective is to localize an object whose name is known
but appearance is unknown. We are further interested in
manipulating the object. One way to learn relevant informa-
tion for grasping is to automatically estimate grasping points
like suggested in [3] or simply approximating an object
with primitives before grasping it [4]. These approaches
are limited due to automatic segmentation which is still a
problem, especially in range images, see [5].

A database of 3D objects enables many new possibilities
such as high level motion planning [6], [7]. Using internet
databases automatically was already done [8], but only using
2D information i.e. using images. We on the other hand,
extract 3D models from internet databases. The selection
of relevant objects is performed using clustering techniques
based on the shape distribution function proposed by [9] and
the distance measures tested in [10] to find out the major
cluster of the resulting models.

To be able to perform completely automatic morphing, we
need to register the models. One technique for doing this is
introduced in [11].

Almost all existing algorithms for morphing work in
two phases, the first one being that of establishing cor-
respondences and the second is of interpolating between
corresponding points[12]. For the first stage, these algorithms
usually project both 3D models to the unit sphere or simplify
the models considerably and then project the original models
to these simplified models. Also this stage requires input
from the human operator as to some basic corresponding
points/edges; and most algorithms available in the literature
only work for models with genus-0 geometry (i.e. models
which are closed). Thus, we need a simpler and faster
algorithm that can handle unclosed geometry, and exploit the
fact that we only need to morph between objects of similar
basic structure.

The last step of our problem is to match many 3D objects
in 2D images. This problem was solved before and there are
many different state of the art methods like [13] which is
based on many views of a 3D object. We are using a state
of the art 3D shape model matching technique, which is
described in [14]. This method matches 3D-CAD-models in
an image by simulating the 2D appearance in a shape model
generation phase. A range of position relative to the camera
must be specified, which can only be done if information
about the scene is available. In our kitchen scenario this is
given, since we assume all static parts to be approximately
known by earlier 3D-Laser scans or similar techniques and
are semantically labeled via methods like [15]. However the
technique described in [14], first requires computationally
expensive pre-processing on the 3D model which limits
the applicability of this approach to small models. Thus,
we utilize the technique of Visibility Culling used by 3D
rendering engines to speed up this preprocessing. Some very
efficient techniques for culling are discussed in [16].

Fig. 2. Overview of the system

III. METHOD

The key contributions of our work are novel preprocessing
mechanisms that are embedded in a technique that allows
robots to localize objects only knowing their name and
some restrictions about their position in a partially known
environment. This is particularly interesting for a learning
phase once the service robot is deployed in a new environ-
ment. We introduce a new morphing algorithm that operates
automatically without the need for any manual human input,
and takes very little time to produce useful models for
matching tasks. Finally we use a very basic Visibility Culling
technique called Backface Culling to demonstrate that the
matching process can be speeded up by such techniques.

An overview of our method is shown in Fig. 2. These steps
are explained in detail below.

A. Object Selection

We pass a search string for example, “mug”, “pot”, or
“kettle” to a 3D Model database (Google’s 3D Warehouse in
our case), and automatically download the resulting models.
However, these 3D Models are in binary format which
are converted to an easily understandable format (Collada
format). In public databases contain incorrectly annotated
models, for example, there are racing cars labelled as spoon,
or a stove on which some pots are present labelled as just pot.
Thus, before resulting models can be utilized for matching,
we need to discard the irrelevant models. To find similarities
between 3D models we use the shape distribution function
proposed by [9]. We further use k-means introduced by [17]
for clustering with k = 4 clusters, since we expect maximally
3 types of outliers[1]. We justify this procedure on the
assumption (verified on a number of search strings) that most
of the models from the internet search are relevant models,
and thus we choose the largest cluster as inliers.

B. Forming new models

Often we do not get enough models to perform a success-
ful matching in a scene. Thus we create new models from
the ones we already possess, for which we utilize morphing
between models, and choose in-between models.

1) Alignment of Models: Morphing process usually re-
quires the presence of a human operator to perform an
appropriate scaling, and alignment to make both models of
same size and aligned[12]. We use the technique presented
by [9] to form a histogram of distances between randomly
selected points on the model-surface, and then pick the

TABLE I
MORPHING ALGORITHM

Step 1: Translate along z-axis and scale making the extent on
both side equal.
Step 2: For every vertex in the source model, find the nearest
point on the surface of the destination model.
Step 3: Introduce this nearest point as a new vertex in the
triangulated model, and divide the triangle containing the
vertex into three triangles.
Step 4: Store this as a mapping from the vertex in source model
to the new vertex in destination model.
Step 5: Repeat step 2-4 reversing the two models.
Step 6: All vertices in both models now have a one-to-one mapping
between them, and they are equal in number.
Step 7: Interpolate between the corresponding pairs of points
using linear interpolation based on the parameter t.

most commonly occurring distance (actually the middle point
of the most frequent bin) and scale that distance to a
constant value and the whole model is scaled isotropically.
A similar technique is used for finding a statistical centroid
and translating both the models so that the centroid lies at
their origin.

Next we need to register the models against each other
before we can start the morphing process. For this, one
technique of interest is the Iterative Closest Point Algorithm
(ICP) [11]. However, ICP works for only dense point-clouds;
while the 3D models have only vertices (of the triangulated
faces) which can be directly used for ICP. These vertices
are densely packed at places where a high curvature is
present in the model; and very few of these are present for
comparatively flat surfaces. Thus, even if the curved surface
has a small area, its alignment is given more weight by the
ordinary ICP, as compared to a more planar surface with
large area - which should not be the case. Thus, we used
the technique presented by [9] to form such a dense point-
cloud which has a distribution of points proportional to the
surface area of the faces. This enables us to run a ICP with
equivalent weight to all parts of the object. We called this
variant a “Volumetric ICP” [1].

2) Morphing: Morphing is a technique that finds common
use in computer animation. It involves transforming from one
image or 3D model to another controlled by a parameter t
going from 0 to 1. At t = 0, the resulting model is the same as
the initial source model, while at t = 1 the resulting model is
the same as the original destination model; whereas at values
of 0 < t < 1, we have a resulting model that is visually “in-
between” the source and the destination model. Thus it is
different from the original models, while maintain similar
basic geometry in case the morphing is performed between
objects of similar shape (which is the case of interest to us).
We exploit this technique to generate new models when we
fail to obtain models that fit the objects in the scene well
enough.

Our approach yields particularly good results when the
models have rotational symmetry around a line (detecting
symmetry in 3D models is a well-studied problem [18]).
Many of the models that we find useful for our kitchen
environment have such a geometry that we may assume
the z-axis to be the principle axis of the models. In the

following therefore, we assume that the axis of symmetry
is the z-axis. The extent of both models is made equal
on both sides of the x-y plane by translating and scaling
slightly. In the following, we refer to one of the two models
(between whom we perform the morphing) as the source
model (corresponding to the morphing parameter t = 0) and
the other model as the destination model (corresponding to
t = 1). For each vertex in the source model, we take the x-
y plane on which it lies, and intersect the triangles in the
destination model with this plane, to obtain the nearest point
on the surface of the destination model to the current vertex
of the source model (we choose the nearest point out of
the nearest points contributed by each plane). This is done
by finding the intersection points of the x-y plane on the
edges using Plücker lines [19]. The reason behind this major
step is that the source and destination models will usually
have different levels of detail. If we have two vertices A and
B which form an edge, the edge is represented by L; and
p represents in homogenous coordinates the x-y plane on
which the source vertex s lies, then

L =

0 AxBy−BxAy AxBz−BxAz Ax−Bx

AyBx−ByAx 0 AyBz−ByAz Ay−By
AzBx−BzAx AzBy−BzAy 0 Az−Bz

Bx−Ax By−Ay Bz−Az 0

p =

[
0 0 1 −sz

]T
.

Then the point of intersection u is given by u = Lp, and
with another intersection point v on another edge of this face,
we can find the nearest point on this line segment from the
source vertex using parameter θ (obtained by taking equating
the derivative of the distance to zero). If the points u, v, and p
are represented in non-homogenous coordinates, then c gives
the desired closest point.

θ =
(u− p)(u− v)
| uv |

c = u+θv

This nearest point is introduced into the mesh of the
destination model as a vertex by dividing the triangle that
contains it into three (one new vertex in destination model
for each original vertex of source model). We repeat this
procedure, reversing the roles of the source and destination
model; and store this one-to-one mapping. The introduction
of new points into the models can be thought of as increasing
the degrees of freedom of the model to take the shape of
the other model and still looking pleasant. The last step is
to perform a linear interpolation of the vertices from their
position in source model to a their final position in the
destination model. The complete algorithm is summarized
in Table I.

C. Final Detection and speed up using Visibility Culling

The 3D shape matching approach [14] uses 3D models to
calculate all necessary shape appearances and searches them
in an image. This makes it necessary to restrict the search

Fig. 3. A Morphing sequence - the first and the last models are obtained
from Google 3D Warehouse.

(a) Score = 0.486 (b) Score = 0.802

(c) Score = 0.683 (d) Score = 0.750

Fig. 4. Two real cups in our kitchen which better match one of the in-
between models (t = 0.25) in Fig. 3, as compared to the original model
(t = 0).

space. Since we estimate the final size of found objects we
need a calibrated stereo setup. We also need an approximated
position of the object, to calculate beforehand all relevant
possible views. Simply calculating all views is not efficient
and will probably use more than the available memory of
any machine.

1) Detection: Any model we obtain from the internet
usually already appears in a very appropriate position for
finding it in the world. For most kitchen objects we found
on the internet we see that they are somehow lying on
supporting plane which is the xy-plane in the 3D model
coordinates. This is of course an assumption and we do not
rely completely on it, but we assume that the majority of
the models are aligned in such a way. Since we align all
models which we select as inliers to each other, we get a
major upright direction. In our kitchen domain we assume
that we have a box model of the major components of our
world. And in case we are looking for an object we can
expect an object present at one of several locations, like on
the table, on the counter, in the fridge or in the cupboard.
For all positions we can approximate a mean-position of the
object relative to the robot inspecting this area. This will be
the reference pose, of an object combined with the zero pose
given by the object itself. Around this pose an uncertainty
has to be specified that increases the search space such that
all relative positions are in it. The expected distance of the
object has to be adapted additionally, since the scaling of the
model does not correspond to the real object. We increase
the distance search space by 20 percent [20].

However, this shape matching approach requires signifi-
cant preprocessing of the given 3D model, whose complexity

Fig. 5. Morphed and culled model matched in a cluttered scene

is polynomial increasing with the number of faces in the
model. We utilize a very simple technique that is common
in the 3D rendering community, called backface culling[16].
The complexity of this operation is linear with the number of
faces, and reduces the number of faces to approximately half
for the parameters we use (discussed shortly). The technique
of backface culling simply requires calculating the angle
between the normal of a face and the viewing vector (a vector
from camera position to any point on the face). If this angle
is greater than a threshold θ we do not include the face in
our resulting model as it will not be visible from the camera
anyway. This threshold can be estimated by using the range
in which we have to search approximately. This is known,
since we assume one plane to be the most probable to find
the object standing on. So, we only have to consider a part
of the viewing field specified by an anlge αlon < 2π and
αlat < 2π . A good prior for this values is given in [20]: the
mean longitude and latitude search space for a dining table
is about 34◦ in both directions. Thus, if we use a reasonable
value for θ = 20◦ we can express such a world imposed
view reductions with 2 culled models. An value of θ = 20
can lead to a reduction of up to half of the faces of the
original model (depending on its convexity). Thus, instead
of giving one large pose and size range for the original
model while matching, we break this range parts and pre-
generate models which contain only those faces that will be
visible in these smaller ranges. The number of parts can be by
n =

⌈
αlon

θ

⌉⌈
αlat
θ

⌉
Then, we feed the matching algorithm only

these simplified models that are matched over the smaller
ranges. The results in Table III indicate that for the same
search space (in which the culled model is valid), the model
generation time using the complete model takes more time
by a factor of 2-3. Thus, even if we have a full pose range
(complete sphere) still we may break it up into parts and
obtain this much speedup.

2) Localization: During localization the position vector
which is result of the detection has to be scaled correctly.
This can be done either monocular, as soon as the size of
the real object correspond to the size of the model or with
a stereo setup. In a stereo setup we use the disparity that
we can calculate using either two matches of the model
in a left and a right image, or by finding the model once
and calculating for the region of interest the disparity using
template matching like normalized cross correlation. This
method can only applied to well textured image regions. The
distance z1 of any point from the first camera of a stereo setup

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

(j) (k) (l)

Fig. 6. The resulting four clusters for the query for “pan”, a - e are inliers,
all the others are classified as outliers (clusters are f-i, j-k and l).

with focal lengths f1 and f2 and relative distance of the two
cameras after rectification d12 can be calculated using the
disparity dpix by z1 = d12 f1

dpix
. Using this information we can

scale the pose which we got from the matching algorithm
relative to the camera. The z component of the result of
the algorithm zresult is the distance from the camera plane,
which means that the scaling factor fscale is fscale = Z1

zresult
.

This factor can be used to adapt the model and connect it
with the real object that was found. That includes dividing all
length measurements by this factor. Afterwards, the detection
of this object can be done also monocular.

IV. RESULTS

For the sake of completeness, we briefly review here some
of the previous results we obtained in [1] and present in
greater detail new ones.

A. Summary of Previous Results

Clustering and selection results on the models obtained
for the search string “pan” is shown in Fig. 6. We manu-
ally counted the erroneous classification results for several
queries, and it was seen that the quote of inliers is improved
by selection in our test from 60% to 79%. We demonstrated
and discussed how localization can be performed once the
object is detected in the scene in detail; where we had partial
knowledge of robot and the scene’s location which allowed
us to restrict the distance between camera and object to a
certain range. We further used a stereo setup to derive the
correct position of the detected mug. It was shown that our
approach is feasible in an autonomous system by testing it in
the following scenario: the robot gets the command to find
a pot on the counter, in the cupboard or on the table. The
current position of the robot is known and it can look at all
three places by simple camera rotation. It was observed that
the robot successfully localized the position of the pot.

The results of similar experiments searching plates can be
found in Table II. Here we can see the potential of the method
to deal with uncertainties: First, several models confirm
the same correct object position, which allows detection of
wrong matches. Also models are probably outlier themselves,
if they do not support the most probable hypothesis. 7(a)
shows the image of the table that was processed. Fig. 7(b)
to 7(d) show several models matched at the same position.

(a) Image of a table. (b) The best match.

(c) The second match. (d) The third match.
Fig. 7. Results with plates.

Model(Faces) Time Model Time Search Matches/Score Remarks

Plate 0(188) 201 s 0.65s 1/0.98 Fig. 7(b)

Plate 10(22) 76 s 0.20s 1/0.97 Fig 7(d)

Plate 9(258) 296 s 1.89s 1/0.86 Fig 7(c)

Plate 4(332) 112 s 0.67s 1/0.83 mismatch

Plate 7(120) 223 s 1.09s 1/0.78
Plate 3(118) 80 s 0.32s 1/0.76
Plate 8(626) 326 s 1.24s 0/0.70 outlier, no match

TABLE II
RESULTS FOR PLATES ON A CLUTTERED TABLE.

B. Morphing

Since we want to detect all objects in our kitchen even
those which are not described well with the direct search
results, we want to show that certain objects can be fit
much better with morphed models. Fig. 3 shows a morphing
sequence (t = 0,0.25,0.5,0.75,1.0) between two cup models
downloaded from Google 3D Warehouse. Fig. 4 shows that
for real cups in our kitchen, the original model from the
database is a poor match, whereas an in-between model
(t = 0.25) is a good match. We reject matches with scores
less than 0.7, thus these cups would not have been detected
with the original model. Fig. 5 shows the same in-between
culled model matched in a cluttered scene with high score
(0.82). It should thus be understandable even with this simple
example that it is possible to generate new models, when
we do not find enough models for a particular search from
the database. Unfortunately, it is difficult to quantitatively
compare our approach with many others already existing in
literature; because most of the existing ones require constant
input from a human operator at different stages and do not
work with models with open geometry (non genus-0 objects).
Our technique is both automatic and works with models
with open geometry which is usually the case with most
objects present in a kitchen environment. On the other hand,
our technique does not yield as visually attractive results as
some others. However, our algorithm is extremely fast, giving
reasonable morphing results for computer vision in tens of
seconds for even very complex models.

C. Face reduction by Visibility culling

Since we have now more models, we have to speed up
the shape model generation and the matching of them. Fig.
8 shows a cup and a pot that have been culled using the

(a) (b) (c)

(d) (e) (f)
Fig. 8. (a) and (d) are two models viewed from the culling viewpoint, rest
are the same models viewed from arbitrary viewpoints. Shaded faces are
the invisible sides of visible faces.

Model Original Model Model after Culling
Mug 904 faces,113.7s 447 faces,29.5s
Cup 1892 faces,87.48s 844 faces,25.5s
Pot 344 faces,33.74s 179 faces,10.14s
Pot 1534 faces,60.393s 791 faces,38.924s
Cup Morphed 3552 faces,794.5s 1786 faces,188.2s

TABLE III
REDUCTION IN THE GENERATION TIME FOR SOME MODELS

technique of backface culling. The view from the culling
viewpoint is valid (here) for rotations of 20 degrees in any
direction. The original cup and pot models had 3164 and
6272 faces respectively, whereas the culled models have 1415
faces and 3135 faces. Table III shows the reduction in the
model generation time when we apply backface culling and
some extra reduction of far away faces (from the camera).
The same pose and size ranges for both the original and the
culled models were used. The speedup obtained is around 2
to 3 on the average. This indicates that significant speedups
are possible, which will be particularly useful for the larger
models. However, this is only possible if we have some prior
knowledge of the pose. If that is not the case, the culling may
still be useful for large models caused by the high memory
usage of the generation process.

V. CONCLUSIONS

We present a system that enables a robot to automatically
model the 3d shape of previously unseen objects. The system
not only acquires already available models from an internet
database, but also creates its new models when only few
models are available online. This in comparable to the ability
of humans of generalizing the shape of objects say cups or
pots. We further applied the technique of visibility culling
to speed-up the matching process, by making its most time-
consuming stage faster. Our approach needs some time to
calculate, so the search for a new object does not compete
with human performance now. But given we can save the
model generation phase or calculate it offline, the online
matching would be fast enough for interaction with the
world. We also see this only as a starting point for further
specialization process that learns specific shape or visual
descriptor models from the images with the already located
objects that will allow realtime interaction.

REFERENCES

[1] U. Klank, M. Zia, and M. Beetz, “3d model selection from an inter-
net database for robotic vision,” Proceedings of IEEE International
Conference on Robotics and Automation 2009, May 2009.

[2] M. Beetz, F. Stulp, B. Radig, J. Bandouch, N. Blodow, M. Dolha,
A. Fedrizzi, D. Jain, U. Klank, I. Kresse, A. Maldonado, Z. Marton,
L. Mösenlechner, F. Ruiz, R. B. Rusu, and M. Tenorth, “The assistive
kitchen — a demonstration scenario for cognitive technical systems,”
in IEEE 17th International Symposium on Robot and Human Inter-
active Communication (RO-MAN), Munich, Germany, 2008, invited
paper.

[3] A. Saxena, J. Driemeyer, and A. Ng, “Robotic Grasping of Novel
Objects using Vision,” The International Journal of Robotics Research,
vol. 27, no. 2, p. 157, 2008.

[4] A. Miller, S. Knoop, H. Christensen, and P. Allen, “Automatic grasp
planning using shape primitives,” IEEE International Conference on
Robotics and Automation (ICRA), 2003, vol. 2, pp. 1824–1829 vol.2,
Sept. 2003.

[5] R. B. Rusu, A. Sundaresan, B. Morisset, M. Agrawal, and M. Beetz,
“Leaving Flatland: Realtime 3D Stereo Semantic Reconstruction,” in
Proceedings of the International Conference on Intelligent Robotics
and Applications (ICIRA) 2008, October 15-17, Wuhan, China, 2008.

[6] K. Okada, M. Kojima, S. Tokutsu, T. Maki, Y. Mori, and M. Inaba,
“Multi-cue 3D object recognition in knowledge-based vision-guided
humanoid robot system,” IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), 2007., pp. 3217–3222, 2007.

[7] A. Morales, T. Asfour, P. Azad, S. Knoop, and R. Dillmann, “Inte-
grated grasp planning and visual object localization for a humanoid
robot with five-fingered hands,” in International Conference on Intel-
ligent Robots and Systems (IROS), 2006, Beijing, China, 2006.

[8] R. Fergus, L. Fei-Fei, P. Perona, and A. Zisserman, “Learning Object
Categories from Googles Image Search,” Tenth IEEE International
Conference on Computer Vision (ICCV), 2005., vol. 2, 2005.

[9] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin, “Shape distri-
butions,” ACM Transactions on Graphics (TOG), vol. 21, no. 4, pp.
807–832, 2002.

[10] E. Wahl, G. Hillenbrand, and G. Hirzinger, “Surflet-pair-relation his-
tograms: a statistical 3D-shape representation for rapid classification,”
Proceedings. Fourth International Conference on 3-D Digital Imaging
and Modeling (3DIM), 2003., pp. 474–481, 2003.

[11] P. Besl and H. McKay, “A method for registration of 3-d shapes,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 14,
no. 2, pp. 239–256, Feb 1992.

[12] F. Lazarus and A. Verroust, “Three-dimensional metamorphosis: a
survey,” The Visual Computer, vol. 14, no. 8, pp. 373–389, 1998.

[13] R. Hoover, A. Maciejewski, and R. Roberts, “Pose detection of 3-
d objects using s2-correlated images and discrete spherical harmonic
transforms,” IEEE International Conference on Robotics and Automa-
tion (ICRA), 2008, pp. 993–998, May 2008.

[14] C. Wiedemann, M. Ulrich, and C. Steger, “Recognition and tracking
of 3d objects,” in Pattern Recognition, ser. Lecture Notes in Computer
Science, G. Rigoll, Ed., vol. 5096. Berlin: Springer-Verlag, 2008, pp.
132–141.

[15] R. B. Rusu, Z. C. Marton, N. Blodow, M. Dolha, and M. Beetz,
“Towards 3D Point Cloud Based Object Maps for Household Envi-
ronments,” Robotics and Autonomous Systems Journal (Special Issue
on Semantic Knowledge), 2008.

[16] D. Cohen-Or, Y. Chrysanthou, C. Silva, and F. Durand, “A survey
of visibility for walkthrough applications,” IEEE Transactions on
Visualization and Computer Graphics, vol. 9, no. 3, pp. 412–431, July
2003.

[17] E. Forgy, “Cluster analysis of multivariate data: Efficiency vs. inter-
pretability of classifications,” 1965.

[18] C. Sun and J. Sherrah, “3d symmetry detection using the extended
gaussian image,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 19, no. 2, pp. 164–169, February 1997.

[19] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision. 2000. Cambridge University Press, Cambridge.

[20] R. Tavcar, “Connecting High-Level Planning, Reasoning, and Model-
driven Vision into a Robotic System that Enables Everyday Manipula-
tion Tasks,” Master’s thesis, Intelligent Autonomous Systems Group,
Technische Universitt Mnchen, Germany, March 2009.

