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Abstract

Scene understanding based on photographic images has been the holy grail of computer
vision ever since the field came into existence some 50 years ago. Since computer
vision comes from an Artificial Intelligence background, it is no surprise that most early
efforts were directed at fine-grained interpretation of the underlying scene from image
data. Unfortunately, the attempts proved far ahead of their time and were unsuccessful in
tackling real-world noise and clutter, due to unavailability of vital building blocks that came
into existence only decades later as well as severely limited computational resources.

In this thesis, we consider the problem of detailed 3D scene level reasoning from a
single view image in the light of modern developments in vision and adjoining fields.
Bottom-up scene understanding relies on object detections, but unfortunately the
hypotheses provided by most current object models are in the form of coarse 2D or
3D bounding boxes, which provide very little geometric information - not enough to
model fine-grained interactions between object instances. On the other hand, a number
of detailed 3D representations of object geometry were proposed in the early days of
computer vision, which provided rich description of the modeled objects. At the time,
they proved difficult to match robustly to real world images. However over the past
decade or so, developments in local image descriptors, discriminative classification,
and numerical optimization methods have made it possible to revive such approaches
for 3D reasoning and apply them to challenging real-world images. Thus we revisit
detailed 3D representations for object classes, and apply them to the task of scene-level
reasoning. The motivation also comes from recent revival of coarse grained 3D modeling
for scene understanding, and demonstrations of its effectiveness for 3D interpretation as
well as 2D recognition. These successes raise the question of whether finer-grained 3D
modeling could further aid scene-level understanding, which we try to answer in our work.

We start with 3D CAD training data to learn detailed 3D object class representations,
which can estimate 3D object geometry from a single image. We demonstrate applying
this representation for accurate estimation of object shape, as well as for novel applica-
tions namely, ultra-wide baseline matching and fine-grained object categorization. Next,
we add an occluder representation comprising of a set of occluder masks, which enables
the detailed 3D object model to be applied to occluded object instances, demonstrated
over a dataset with severely occluded objects. This object representation is lifted to met-
ric 3D space, and we jointly model multiple object instances in a common frame. Object
interactions are modeled at the high-resolution of 3D wireframe vertices: deterministically
modeling object-object occlusions and long-range dependencies enforcing all objects to
lie on a common ground plane, both of which stabilize 3D estimation. Here, we demon-
strate precise metric 3D reconstruction of scene layout on a challenging street scenes
dataset. We evaluate parts of our approach on five different datasets in total, and demon-
strate superior performance to state-of-the-art over different measures of detection qual-
ity. Overall, the results support that detailed 3D reasoning benefits both at the level of
individual objects, and at the level of entire scenes.
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Zusammenfassung

Seit sich die computer vision vor ca. 50 Jahren als eigenständiges Feld etabliert hat
ist das Szenenverstehen, also die semantische Interpretation der abgebildeten Szene,
eines ihrer fundamentalen Probleme. Da der Ursprung der computer vision in der
künstlichen Intelligenz liegt überrascht es nicht, dass zu ihren Zielen von Beginn an
das automatische Verstehen der beobachteten Szene gehörte. Aus heutiger Sicht ist es
verwundert es auch nicht, dass die anfänglichen Versuche scheiterten, einerseits weil
wesentliche Grundlagen erst Jahrzehnte später entwickelt wurden, andererseits weil die
damaligen Computer nicht die notwendige Rechenleistung hatten.

Die vorliegende Arbeit untersucht das Problem des detaillierten, 3-dimensionalen
Szenenverstehens auf Basis eines Einzelbildes, ausgehend von den heutigen
Möglichkeiten der computer vision und verwandter Disziplinen. Ein grundlegender
Baustein des Szenenverstehens ist die Erkennung von Objekten im Bild. Die gebräuch-
lichen Detektoren liefern jedoch als Objektmodell nur 2D oder 3D bounding boxes, und
diese grobe Repräsentation ist nicht geeignet, die Objektgeometrie und die Interaktionen
zwischen verschiedenen Objekten im Detail zu modellieren. In Gegensatz dazu wurden
in der Frühzeit der computer vision Repräsentationen der Objektgeometrie entwickelt, die
eine wesentlich höheren Detailgrad aufweisen. Es gelang damals aber nicht zuverlässig,
das Modell mit dem Bildinhalt in Korrespondenz zu bringen. Die Entwicklungen der
letzten Jahre im Bereich der lokalen Bild-Deskriptoren, der diskriminativen Klassifikation
und der numerischen Optimierung ermöglichen es, diese Ansätze wiederzubeleben und
auf das Verstehen komplexer 3-dimensionaler Szene anzuwenden. In der vorliegenden
Arbeit wird daher eine solches klassisches, detailreiches 3D Objektmodell für das bild-
basierte Szenenverstehen benutzt. Der vorgestellte Ansatz ist unter anderem dadurch
motiviert, dass in den letzten Jahren das 3-dimensionale Szenenverstehen – mit eher
groben Modellen – wieder vermehrt untersucht wurde. Dabei zeigte sich ,dass es sowohl
für die 3D Modellierung als auch für die Objekterkennung im Bild Vorteile bringt. Diese
Erfolge werfen die Frage auf, ob detailliertere Modelle das Szenenverstehen weiter
verbessern können. Die vorliegende Arbeit ist ein Versuch, die Frage zu beantworten.

Den Ausgangspunkt der Arbeit bilden 3D CAD-Modelle. Auf deren Basis werden detail-
lierte, deformierbare Objektrepräsentationen gelernt, mit deren Hilfe die 3D Geometrie
des Objekts auf Basis eines Einzelbildes geschätzt werden kann. Neben der Rekonstruk-
tion der genauen geometrischen Objektform ermöglichen solche Modelle auch neue An-
wendungen wie das matching über extrem grosse Basislinien und die Klassifizierung in
nur durch geometrische Details unterscheidbare Unterkategorien. Um Verdeckungen in
den Bildern verarbeiten zu können wird das Modell um eine Verdeckungsmaske erweit-
ert. Die Maske ermöglicht es, die Verdeckung einzelner Objektteile darzustellen, und es
wird gezeigt, dass sich damit auch stark verdeckte Objektinstanzen detektieren lassen.
Schliesslich wird das Modell noch so modifiziert, dass Objekte im metrischen 3D Ko-
ordinaten repräsentiert werden. Somit können mehrere Objekte in einem gemeinsamen
Koordinatensystem modelliert werden. Weiters werden Interaktionen zwischen den ver-
schiedenen Objekten auf dem Niveau einzelner Objektpunkte und -flächen berücksichtigt,
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im speziellen gegenseitige Verdeckungen und eine gemeinsame Geländeebene, auf der
alle Objekte stehen. Es wird gezeigt, dass mit einem derart stabilisierten Modell komplexe
Strassenszenen metrisch korrekt rekonstruiert werden können. Die einzelnen Teile der
vorgeschlagenen Methode wurden auf mehreren verschiedenen Datensätzen evaluiert,
dabei wurden signifikante Verbesserungen hinsichtlicher verschiedener Qualitätsmasse
beobachtet. Insgesamt stützen die Ergebnisse die Hypothese, dass die detaillierte 3-
dimensionale Modellierung vorteilhaft für das Bildverstehen ist, sowohl auf der Stufe
einzelner Objekte als auch auf der Stufe kompletter Szenen.
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Chapter 1

Introduction

Humans are able to infer a lot of detail about the underlying scene from a picture. They
know what objects are present, their poses, the 3D spatial layout of different scene
elements (compact, well-delineated objects and “stuff” such as walls, sky, ground), as
well as how these elements interact with each other. Human visual processing system
not only recognizes objects in isolation but also considers context: the recognition of
each scene component improves the recognition of other components. A yellow round
blob in the hands of a player standing in a tennis court, would immediately be recognized
as a tennis ball. However, exactly the same pixels cut out from the yellow blob shown on
a dining table with some vegetables, would be “recognized” as a lemon.

Since its beginning, detailed scene understanding has been the holy grail of computer
vision research. Researchers proposed a number of rich representations for objects
and scenes and applied them to images acquired under controlled settings, such as
on blocks arranged in different configurations pictured against a clean background. We
discuss in detail, such legacy systems for 3D object recognition (Section 1.3.4) and
scene-level reasoning (Section 1.3.6), and mention several others in the later chapters
(Chapter 3, 4, 5). Unfortunately, these algorithms could not work with real-world images
due to appearance variations arising from occlusions, viewpoint, intra-class shape,
lighting, and texture, as well as due to distractions arising from background clutter. These
robustness issues were caused by a deterministic approach to vision problems that could
not reliably take various distractions found in image data into account. Furthermore,
the algorithms that search for best hypothesis among a large or even infinite set of
hypotheses (optimization algorithms) were severely limited by computational resources.

Due to these nuisances, subsequent research traded off modeling accuracy for ro-
bustness in matching, e.g. by representing objects by the statistics of local features in
an image window. Consequently there have been significant advances in local shape
features, discriminative classifiers, and efficient techniques of approximate probabilistic
inference. This has led to impressive performance on recognition of a variety of object
classes, on region labelling, and on scene classification problems over the last decade,
but the extent to which interactions between scene entities can be modeled is still
fairly limited. The objective of this thesis is to revisit ideas from the very early days of
computer vision in the light of modern machine learning and optimization techniques,
while benefitting from superior computational resources.

14
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Overriding research questions. This thesis looks at whether recent developments have
taken us to a point where we may use detailed 3D object models, like those explored in
the early days of computer vision. In this context it asks the following questions:

1. Can such models be made to work on challenging real-world imagery as opposed
to images taken under laboratory settings? Is it beneficial to use fine-grained 3D
object models as opposed to models that simply output 2D bounding boxes around
objects?

2. Since one major issue in realistic scenes is partial occlusion: how can such models
be made to cope with occlusion?

3. Are there any advantages in applying detailed 3D object representations to the task
of high resolution object interaction modeling in 3D space, over coarser modeling
approaches?

1.1 Motivation

As mentioned already, the past decade saw rapid advances in object recognition
technology fueled by sustained interest of a large part of the computer vision community.
Independent object recognition (i.e. without considering any context) remained the area
with the greatest number of paper submissions and acceptances at flagship computer
vision conferences like CVPR for many years. However recognition performance of
independent 2D appearance representations started to saturate (e.g. ≈35% average pre-
cision for the well-known Pascal VOC challenge Everingham et al., 2010). Although per
se this does not mean that more complicated models are the way to go, it does still raise
the question whether a 3D representation, which allows top-down segmentation, recon-
struction, and recognition in a more integrated way would alleviate some of the difficulties.

More recently (about the time this thesis started), researchers had revived coarse 3D
geometric representations in the context of indoor and outdoor scene understanding
(Section 1.3.5). They demonstrated the benefits of 3D geometric reasoning not only w.r.t.
greater expressiveness of the models but also increased 2D recognition performance.
This hinted that even richer 3D representations amenable to joint reasoning about
multiple scene element could be further beneficial for scene understanding.

These insights led us to pursue a course of research where we developed a detailed 3D
object model, exploring the benefits offered by such models, and gradually extending it
for reasoning about interactions first in the image space and then in metric 3D space.

1.2 Methodology and Contributions

The work done in this thesis has been successively disseminated across several papers.
Since this thesis is being presented as a paper dissertation (in compliance with ETH-
Zurich Doctorate Ordinance of 2008), we include the key papers as Chapters 3, 4, and 5.
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Approach. We follow a step-by-step approach to building a 3D scene-level reasoning
system. To this end, we start by developing a detailed 3D object model trained on 3D
CAD exemplars. This representation provides us with a 3D shape hypothesis for an
isolated fully visible object under challenging viewing conditions (variations in azimuth,
elevation, scale, background, and lighting) from a single view image. In fact, the original
model that we introduce in Zia et al. (2011) requires huge computational and memory
resources, since the appearance representation requires a separate AdaBoost classifier
for each part and viewpoint. This means training and then evaluating more than 5000
classifiers in a sliding-window fashion on the test image (36 parts x 144 viewpoints
= 5184 classifiers). This prohibitively expensive requirement is lifted in the follow-up
work (Chapter 3; Zia et al., 2013) by introducing a viewpoint-invariant Random Forest
classifier. We perform extensive experimentation on two standard datasets and show that
such expressiveness in modeling is beneficial even without performing higher scene-level
reasoning: for continuous viewpoint estimation, ultra-wide baseline matching, and even
fine-grained categorization.

The next step is adding an explicit occluder representation to the model (Chapter 4),
so that even partially occluded objects may be reliably detected and reconstructed. As
no dataset with well-labeled instances of severely occluded objects was available, we
created our own dataset for evaluation, and made it publicly available. Specifically we
collected and labeled a new test set comprising of 100 challenging street images from
around Zurich, biased towards challenging occluded cases. The experiments on this test
set indicate the efficacy of our explicit occlusion modeling.

Next we lift the object model from image space to metric 3D space (Chapter 5), by training
the detailed 3D geometric representation on 3D CAD models, which have been scaled
according to their real-world dimensions. Next, we perform an intermediate 2D-to-3D
lifting step by coarse grid search. This inherently converts our inference to a 3D scene
reconstruction procedure, iteratively verifying the reconstruction against image evidence.
We further introduce two modes of explicitly modeling object-object interactions: a
common ground plane and determinstic object-object occlusion reasoning. We also
make necessary modifications to our inference procedure to cope with this increase in
search space dimensionality. We evaluate the approach on the newly introduced KITTI
dataset of Geiger et al. (2012) which comes with camera calibration and 3D object
labels1. The detailed experimentation for 3D object localization, 3D viewpoint estimation,
and occlusion prediction indicate that such higher fine-grained scene-level reasoning
indeed improves accuracy over all these measures.

The evaluations performed during these three stages of the thesis, effectively answer the
original research questions that we set out to answer (see Overriding research questions).

Contributions in Chapter 3. The contributions made in the development of the detailed
3D geometric model are as follows:

1. We revisit a detailed 3D geometric model in the light of modern advances in repre-
sentation, learning, and optimization. We show that for certain object types classical

1The KITTI dataset was not available for the earlier chapters.
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3D geometric object class representations can deliver object hypotheses with far
more geometric detail than current detectors.

2. We demonstrate that a 3D object model enriched with local appearance descriptors,
and coupled with a discriminative classifier allows accurate determination of object
shape and continuous pose. In particular, our model outperforms state-of-the-art
techniques for object viewpoint estimation over two standard multi view datasets.

3. We successfully show the benefit of detailed 3D reasoning for two novel applica-
tions: (i) a geometric modeling task namely ultra-wide baseline matching, where
we recover relative camera poses over baselines up to 180◦ apart again improving
over state-of-the-art by large margins, and (ii) predicting fine-grained object cate-
gories (different types of cars and bicycles) based on our wireframe estimates with
encouraging results.

Contributions in Chapter 4. The contributions toward occlusion modeling in detailed 3D
object representations are described below:

1. We propose a complete framework for detection and reconstruction of severely oc-
cluded object in monocular images, starting with a variant of the poselets idea (Bour-
dev and Malik, 2009) adapted to the needs of our 3D object model.

2. Alongside local part detectors, our appearance model now integrates evidence from
the configuration detectors which profit from considering a relatively larger spatial
window in predicting the local part location. These predictions are valuable because
separate configurations are learned for separate viewpoints and major shape varia-
tions, causing the part locations to be well correlated.

3. An explicit occlusion model represented by a set of occluder masks and a neighbor-
hood definition among them that allows for efficient sampling of the masks.

4. We experimentally demonstrate the efficacy of our approach on strongly occluded
objects, in situations where representations without an occlusion model fail.

Contributions in Chapter 5. The contributions made while attempting to jointly model
multiple object instances in a common 3D frame can be described as follows:

1. To the best of our knowledge, our work is the first attempt at exploring both short
range and long range object-object interactions within a scene at high geometric
resolution (individiual vertices of a wireframe model).

2. We further capitalize on our detailed object model with explicit 3D pose and explicit
parts for occlusion modeling, by integrating deterministic reasoning about occlusion
among detected objects with a generative probabilistic model of unknown occluders
(Chapter 4). This again yields better 3D localization accuracies as compared to
indepedently estimating occlusion for each individual object.

3. Finally, we present a detailed experimental evaluation of the 3D scene model on
the KITTI street scene dataset (Geiger et al., 2012), and demonstrate the ability to
localize 44% of highly occluded cars accurately with an accuracy of 1 meter.
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We defer a much more detailed description of methodology, contributions, and experimen-
tal evaluation to Chapters 3, 4, and 5. While discussing contributions, we should mention
that we have already made publicly available all the image sets (training and testing), as
well as annotations (≈2500 training and testing images labeled at high resolution). Also
most of the trained models, and source code developed during this thesis has already
been made publicly available, and the remaining portions will be published in due course.

1.2.1 Overview of the thesis

We start by discussing key ideas from literature as well as highlighting the contributions
made in this thesis in the current chapter (Chapter 1).

Chapter 2 introduces some standard machinery from computer vision and machine
learning for completeness. We explain the fundamental principles behind the building
blocks in our system.

The next three chapters successively build a 3D scene-level reasoning system from the
ground up. The first stage in the development is a detailed 3D geometric object model
which can deal with multiple views, however can only reason about fully visible objects in
isolation, discussed in Chapter 3. Apart from discussing approach and experiments, we
provide a more detailed literature survey on object modeling.

Chapter 4 augments our object model with an explicit occlusion representation. We
present a complete system for recognition and reconstruction given a single view image,
from obtaining coarse 2D bounding box level detections to refining them into fine-grained
3D shape hypotheses. However, this chapter still deals only with individual object
instances. The literature survey includes a more thorough overview of recent occlusion
modeling work. We present experiments on a street scenes data set that we collected
from around Zurich, comprising of severely occluded cars.

In Chapter 5, we discuss joint modeling of multiple objects in a common 3D coordinate
frame, invoking object-object interactions at a high geometric resolution. 3D object
locations as well as qualitative 3D reconstructions are obtained for the challenging KITTI
(Geiger et al., 2012) dataset, from single view images. We demonstrate superior results
for 3D localization and viewpoint estimation accuracy as compared to baselines which
do not utilize joint object modeling.

Chapter 6 concludes the thesis. After summarizing the results from the previous chap-
ters, it discusses the lessons learned in the course of the thesis, and critically analyzes
the proposed system. It also proposes future directions, both at the level of technical
upgrades and suggestions towards the advancement of scene understanding systems
from a broader perspective.
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1.3 Related work

The work done in this thesis touches upon various problems in computer vision: object
class recognition, viewpoint invariance, occlusion modeling, scene-level understanding,
even ultra-wide baseline matching, part appearance sharing, and fine-grained catego-
rization. We introduce some of the key ideas explored in the literature in the following
sections, and defer a more detailed listing of important work to later chapters.

1.3.1 Object class detection

Research in object detection is divided into two categories, namely, specific object
detection and object class detection. Specific object detection deals with recognizing a
particular object exemplar, e.g. the book “Computer Vision” by Forsyth and Ponce, as
opposed to the generic object class “book” (dealt with in object class detection). While
specific object detection is challenging in itself, it does not have to deal with the added
problem of being invariant to intra-class appearance and shape variations e.g. between a
sedan and a station wagon. Dominant approaches to object class detection include: (1)
bag of words models, (2) approaches based on the generalized Hough transform, and
(3) sliding-window models (rigid and part-based).

Bag of Words models. “Bag of words” (BoW ) approaches for visual object class recog-
nition, introduced by Sivic and Zisserman (2003) and Csurka et al. (2004), represent an
object class as a collection of “visual words” (usually local invariant features, surveyed
in Tuytelaars and Mikolajczyk (2008)) discarding the relative locations of these words.
Local invariant features are points or regions in the scene, which can be accurately
detected when pictured from different illumination, viewpoints, and distance. These
approaches quantize the local invariant features extracted from many training exemplars
to a fixed visual vocabulary. Thus for “face” class the visual words might comprise
of nose, ears, eyes, and lips, but discard the fact that eyes lie side-by-side, and are
above the nose which is above the lip. Discarding the geometry obviously makes the
model invariant to intra-class shape variations, however not utilizing such an informative
cue does not intuitively seem like it would yield strong detectors. Surprisingly, BoW
approaches remained the most powerful methods for 2D object class recognition over
the past decade 2000-2010 (Everingham et al., 2010). However over the last few years,
part-based methods have matured e.g. Felzenszwalb et al. (2010), and outperform BoW
models.

Generalized Hough Voting. Generalized Hough Voting methods augment BoW -style
models with implicit shape information which helps group together visual word detections
that are likely to belong to the same object instance. This is achieved by letting the visual
word activations in a test image cast votes for object location and scale. Bounding box
level detections are then obtained by finding modes in the voting space. An important
approach which falls in this category is the Implicit Shape Model (ISM) of Leibe et al.
(2006). Given a labeled training set comprising of 2D bounding boxes around exemplars
of the object class of interest, ISM computes local interest points on the test images,
maintaining the displacement to the object center and relative scale for each interest
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point. These interest points are then clustered on the basis of appearance, and form a
“codebook” of visual words. For detecting objects in an unseen image, the interest point
detections are matched against the codebook, and probabilistic (soft) votes are cast
according to the stored spatial distribution of the matched codebook entry. A standard
“scale-adaptive” mode estimation scheme is used to find the maxima in the voting space.
In practice, they further use a verification stage against stored segmentation masks to
filter out erroneous votes and improve the detection scores. Perhaps the most successful
variant which mixes Hough voting with sliding-window classification is the Poselets
method of Bourdev and Malik (2009) (described in Section 1.3.3).

As opposed to BoW detectors, this approach models the relative positions of the visual
words, however not as rigidly as the part-based models (discussed next). Also this
method is naturally suited to handle partial occlusions, since even if some of the interest
points on an object are occluded, the visible ones can still vote for the correct object cen-
ter. However, this method like the BoW model, suffers from relatively high false-positive
rates since cluttered backgrounds may give rise to many similar looking local features.
Further, lately it has become established that dense features coupled with discriminative
techniques outperform sparse interest point based approaches for rigid object class
detection. These ideas have been integrated into the framework of Generalized Hough
Voting by Gall and Lempitsky (2009) who utilize a Random Forest (Section 2.2.2) to
perform the voting instead of forming an explicit codebook. However, dense feature
coverage and discriminative methods (classification, as opposed to regression used
here) has been more successful and explored far more in the context of sliding-window
framework, which we cover in the next few paragraphs.

Sliding window detectors: Rigid models. Another dominant object class detection
approach, sliding-window based detectors, evaluate a “sliding” window over the entire
test image (since the object of interest can be present at any location in the image), at a
range of scales (since the object can be of different sizes in the image). Such approaches
can be further divided into two sub-categories: rigid models and part-based models.
Rigid sliding window detectors effectively reduce the problem of object detection to binary
classification (object vs. background) combined with exhaustive search. One important
example of a rigid sliding window detector is the Histogram of Oriented Gradients
(HOG) model of Dalal and Triggs (2005). This method is based on computing local
image gradients. Image gradient at a certain pixel location for a certain direction, is the
magnitude of change in image intensity in that direction. In this approach, the detector
window is divided into small rectangular cells, and for each cell a histogram of gradient
orientations is computed. Each bin in the histogram corresponds to a range of gradient
orientations (e.g. 0◦–180◦ divided evenly in 9 bins), and is filled with the sum of per-pixel
gradient magnitudes. The overall window histogram comprises of a 1D vector appending
all the component histograms. Assignment of whether a window contains an instance of
the object class of interest or not is carried out by passing the histogram as input to a
classifier. A classifier is an algorithm which outputs one of a discrete set of labels given
an input vector (Section 2.2). Before the system can be applied to unseen (test) images,
the classifier (specifically a Support Vector Machines or SVM classifier) “learns” the
values of a set of tuning parameters (SVM weights), over a set of labeled input vectors,
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in this case, labeled into object and non-object classes. It should be noted that the model
absorbs intra-class variations by local spatial and orientation binning, since such binning
allows minor local geometric and photometric variations. Although many variants of
gradient histograms had been proposed in earlier work, Dalal and Triggs (2005) pursued
a detailed analysis of various parameters involved in designing such histograms, and
reported a number of lessons learnt. These suggestion for robust design of rigid models
include that spatial sampling should be kept coarse, the orientation sampling should be
fine, and that local constrast normalization (after combining multiple adjacent cells into
blocks) should always be performed. This model while fairly robust, however is of little
use to us directly since the global template has no “parts” and is not viewpoint-invariant.

Sliding window detectors: Part-based models. Part-based models search for parts
of the object in each test window, modeling the relative part displacements in one way
or the other. While intuitively it makes sense to incorporate this additional information
about relative part locations (in addition to part appearances), it took a long time
before a part-based model could really perform better in practice than the BoW models
(Felzenszwalb et al., 2010). One way of modeling the relative locations of the parts
was introduced in the framework called “Pictorial Structures" (Fischler and Elschlager,
1973). The Pictorial Structures framework penalizes deviations of part locations from
their mean positions relative to a “root” part, on overall object detection score (penalties
subtracted from the sum of part appearance scores). This can be thought of as springs
attaching the root part (e.g. the nose part in a face model) to the other parts (eyes, ears,
lips), the springs being at rest when the parts are at their mean position. It takes effort
proportional to the amount of displacement, to stretch a spring and bring a part to any
other location, e.g. to bring the nose above the eyes. However a small deformation may
be allowable if it significantly increases the part appearance score. The object detection
process attempts to maximize the overall object detection score by displacing the parts,
in the test window. The most important variation of this idea, which is the top performer
among the available and established “standard” methods on the Pascal VOC Challenge
and has become a standard “go to” detector in the field, is the Deformable Parts Model
(DPM) of Felzenszwalb et al. (2010). In this model, the root part comprises of a rigid
HOG template, and the parts are also smaller HOG templates, all learnt on training
data. The model parameters are automatically learnt over labeled training images (2D
bounding boxes around example objects). However, the number of parts is specified
manually. Relatively large intra-class variations are accounted for by these deformations,
whereas local variations are dealt with by the spatial and orientation binning in the HOG
templates. Dynamic programming is used to efficiently search the space of part location
hypotheses when matching. The approach leverages on advances in discriminative
learning techniques as well as a number of algorithmic tricks (e.g. to deal with large
amounts of training data).

We use a bank of DPMs as the first step in our processing pipeline (Chapter 4), i.e. to
detect candidate 2D object locations, which we then refine using our detailed 3D object
model. Our detailed object model is also part-based, however we utilize an Active Shape
Model (ASM) formulation (Section 2.3) to model relative part locations. The advantage
of this formulation is that it constrains all relative part locations to always output an over-



22 CHAPTER 1. INTRODUCTION

all plausible object geometry (as seen in the training data), which is not the case with a
star-shaped model (all parts connected only loosely to a root part). However, the disad-
vantage of our approach is that the optimization is more expensive, causing us to resort
to simulation-based approaches (Section 2.4).

1.3.2 Multi view recognition
Objects can have significantly different appearance when viewed from different poses,
e.g. consider the side-view vs. front-view of bicycles, or the top view vs. front view of
airplanes. Besides being tolerant to intra-class variations, object class detectors also
need to model appearance variations across viewpoints. The most common approach
for achieving this is to train a “bank” of several independent single view detectors, and
combine their detections by some arbitration function. One example is the DPM-3D-
Constraints approach of Pepik et al. (2013), which defines parts to be cubical volumes
on a set of aligned 3D CAD models of the object class of interest. The approach learns
many single view DPM detectors on 2D projections of these CAD models. The additional
benefit of keeping parts consistent across viewpoint detectors is that they can establish
top-down correspondences among multi view test images, which can be useful for
higher-level reasoning. However to get good results they need to densely model the
relevant region of the viewing sphere, resulting in too many independent detectors which
have to be evaluated over the same test image - and thus very high computational load.
On the other hand, if the expected set of views is not densely modeled, object instances
with an unseen pose may be missed. Thus some multi view detectors employ different
degrees of coupling between different views in their representation.

One such detector, Thomas et al. (2006) augments the Implicit Shape Model (discussed
in Section 1.3.1, Generalized Hough Voting), to “transfer” votes across ISM codebooks
trained for different views through activation links. For training, it requires images taken
from different views for each specific object instance in the set, and estimates “region-
tracks” across views for each specific object. The region-tracks are correspondences
between local interest regions found across different views for the objects. A separate
ISM model is trained for each viewpoint using training examples only for that viewpoint.
The region-tracks are then used to establish linkages (per object instance) between
entries of the ISM codebooks called activation links. To detect objects in a test image,
the approach first evaluates the bank of viewpoint-dependent ISM models separately
on the image, and agglomerates the predicted 2D bounding boxes in to clusters (w.r.t.
location and scale), discarding the clusters that have little support. Finally, it performs
vote transfer among the codebooks for the detections in each agglomerated cluster.
The advantage of this approach is that if the pose of a test object falls in between two
viewpoint-dependent ISMs, evidence from both the views can be corroborated resulting
in a more confident detection hypothesis, while requiring fewer independent ISMs.

Similar to Thomas et al. (2006), we also perform viewpoint estimation in two stages, first
is a coarse stage comprising of a bank of single view detectors which provides us with a
2D object bounding box and a discrete 2D viewpoint (classified into one of eight classes).
The second stage refines the viewpoint estimate by projecting a 3D wireframe model into
the test image, searching in continuous viewpoint space. Utilizing a true 3D model allows
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us to achieve highly accurate estimates of viewpoint (Chapter 3), which are valuable at
different levels: from low-level tasks like occlusion and space occupancy reasoning, to
higher-level ones such as enforcing long-range regularities (e.g. cars are parked usually
parallel to each other).

1.3.3 Occlusion invariance
A major challenge for visual object detection is missing image evidence due to partial
occlusion, and while BoW and ISM-style detectors are naturally suited to dealing with
occlusions, they are nevertheless not competitive for object classes with low or moderate
articulation. Thus researchers have been pursuing occlusion modeling in the context
of rigid and part-based models. In the absence of an occlusion model, sliding-window
approaches cannot distinguish between occluded and unoccluded portions of the object,
causing the estimates to be inaccurate. One representative approach that attempts at
modeling occlusions in HOG-style detectors is Wang et al. (2009), leveraging on the
separability of block-level responses for a linear SVM classifier. A linear SVM classifier
is represented by a weight vector (learnt on labeled positive and negative training
examples), the sign of whose dot product with a test vector indicates the class (positive
or negative) of the test vector. It is rather straight-forward to separate the local inner
products corresponding to the responses of the blocks in the full window HOG. The
approach treats the numerical responses of individual blocks as forming an image which
is then segmented into sub-regions based on similarity of response. This often results
in distinct segments of negative and positive scoring blocks, with the negative scoring
segments usually belonging to the occluded portion of the object. If however all the
segmented regions comprise of negative scores, then the window is labeled as not
having an object. It should be noted that even though HOG is a global, rigid model, this
approach effectively treats the blocks in the HOG-window as rigidly assembled parts.
This should not be surprising, since reasoning about partial occlusions is intuitively better
suited with part-based models.

Poselets. One important approach called poselets (Bourdev and Malik, 2009) replaces
local invariant features used in Hough-style detectors as the visual words, with larger
rigid HOG templates. For inference it obtains consensus over part evidence as in ISM. A
large number of training images are labeled at the level of local parts (e.g. elbow joint,
neck, head, hand). The training set is then automatically divided into many clusters,
each consisting of the same set of parts in similar 2D layout, so that e.g. all upper
body examples in the “waving” pose get assigned to a single cluster. Next, separate
rigid HOG-like templates (poselets) are trained for each of these clusters. At run time,
the entire bank of poselet detectors is evaluated on the test image and high-scoring
activations are agglomerated together to give the final detections. A major strength of
poselets lies in the fact that it can even deal with severely articulated objects like humans
in a wide variety of poses.

We utilize our own implementation of poselets (but using DPMs instead of rigid templates
as base detectors) to obtain coarse 2D bounding boxes as well as additional evidence for
our local parts locations. The second layer of our model is a detailed 3D wireframe model
equipped with an explicit occluder representation based on a set of pre-defined occluder
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masks (Chapter 4). The set of occluder masks together with a neighborhood function,
act as a prior distribution representing plausible occlusion patterns. An occlusion mask
defines which parts are visible, and which ones are not. For the invisible parts behind the
mask, image evidence is then not considered. Since the occluder is represented explicitly
the framework is not limited to occlusions inferred from a lack of evidence, but also covers
occlusions by other detected objects (Chapter 5).

1.3.4 Detailed 3D object modeling
Most current object models output coarse estimates like 2D or 3D bounding boxes
around objects in images. Such object hypotheses convey very little geometric informa-
tion and bounding boxes always over-estimate object extent, which makes high-resolution
reasoning about object interactions difficult. However, historically a number of rich 3D
object models were proposed, starting with the work of Roberts (1963) which considered
images of synthetic polyhedral objects without any real-world clutter in background or
foreground. The approach reasons in a 3D reference frame, considering self-occlusions,
as well as compositions of complex objects from simpler shapes. However line based
object models are not representative of most real-world object classes, and having
no mechanism to reject the many spurious edges that are inevitably present in any
uncontrolled environment means that the system does not work outside controlled
settings. Another classical system is the SCERPO vision system of Lowe (1987) which
matches a 3D CAD model of a specific polyhedral object to a cluttered image containing
multiple instances of the same object, which mutually occlude each other. The method
automatically separates line segments in the (edge) image, and utilizes line grouping
cues (collinearity, closeness, and parallelism) to form a large set of initial object hypothe-
ses. The groupings are ranked according to pre-defined rules, and finally edge-based
matching against projection of the 3D CAD model is performed to refine the hypotheses
and obtain a fine-grained hypothesis about the scene. Again while the system performs
well for a few test images, it is only applicable to controlled settings, because realistic
images have far too many distractors in the background to robustly reason at the level of
short line segments.

A very recent work that has similar characteristics to our detailed 3D object model, is
the Aspect Layout Model (ALM) of Xiang and Savarese (2012). This is a part-based
model with planar segments representing the parts (e.g. 1 planar segment in the bicycle
class, 6 in the car class), which are defined manually for each object class. Relative part
locations in 3D are learned on manually annotated CAD models. The appearances of the
parts are learnt as HOG templates over renderings of 3D CAD models. Like many other
approaches including ours, they organize detection as a two stage process, by training
so called root templates trained over full object views as a coarse first stage, iteratively
refined by deforming the part templates. Since the parts are planar, viewpoint invariance
is achieved by rectifying each planar segment to its frontal pose. They demonstrate
competitive results for viewpoint and 2D part localization accuracy, over an impressive
array of 16 different object classes. On the other hand, their model is coarser than
our deformable wireframe model (21 parts in the bicycle class, 36 in the car class)
and reasons about object viewpoint in discrete steps as compared to our continuous
viewpoint reasoning, which impede high-resolution reasoning about object interactions.
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They further extend this model to perform scene-level reasoning in Xiang and Savarese
(2013), discussed in Sect 1.3.6.

Another very recent example of fine-grained object modeling is the approach of Hejrati
and Ramanan (2012), which also uses a two stage approach. However here all fine-
grained reasoning is performed in 2D (first stage). This is achieved by extending the
DPM model, with a global mixture model to enforce globally plausible geometry and allow
self-occlusion reasoning across viewpoints. In the second stage, the 2D hypotheses are
lifted to 3D by using a standard non-rigid Structure from Motion (SfM) algorithm (Torre-
sani et al., 2003), assuming correspondences between the 2D part location estimates
and a fixed 3D wireframe. Even though the 3D lifting seems like an after-thought in this
model, it enforces stronger global geometry constraints, causing part-level localization
accuracies specially for occluded parts to improve. All learning is performed on 2D
images, as opposed to 3D CAD data often used for such modeling. The advantage of
staying close to the DPM model is that the inference is based on dynamic programming
and thus much faster than both ALM and our model. Another obvious advantage over the
ALM and our initial model (Chapter 3) is the implicit occlusion reasoning. However the
approach utilizes a rather rigid 3D model and thus does not provide accurate object-level
reconstructions, as we do.

Our detailed wireframe model is closer to Hejrati and Ramanan (2012) w.r.t. part repre-
sentation (point parts which are vertices of a 3D wireframe), but more similar to the ALM
(Xiang and Savarese, 2012) w.r.t. training data (3D CAD models). Our inference proce-
dure is also closer to the latest “scene-level” version of ALM (Xiang and Savarese, 2013),
since both are based on stochastic simulation. While a dynamic programming based infer-
ence as in Hejrati and Ramanan (2012), reaching the global optimum in much lesser time
is obviously preferable, we are unaware of any inference procedure that registers detailed
3D models with 2D image data without some form of “hypothesize-and-verify” step which
is always expensive. In fact, fine-grained 3D modeling has been explored in more detail in
the face recognition community, and still their inference algorithms remain very slow (≈20
minutes to fit one face model in the recent work of Schönborn et al. (2013) which uti-
lizes a similar detailed representation to ours). On the contrary, our object model is more
fine-grained as compared to both of these state-of-the-art models, allowing object-object
interactions to be modeled at the level of small parts like a bumper corner on a car or a
saddle on a bicycle, and reasoning in a continuous 3D space.

1.3.5 Coarse scene modeling and context
Starting with Hoiem et al. (2005), a number of interesting approaches have been revived
which reason about scene layout in 3D. With this research, a broad concensus has
emerged that coarse modeling in 3D and contextualizing the detection of different scene
elements improves all estimates (see Hoiem and Savarese (2011) for an excellent survey
and discussion). Here we discuss two such interesting systems: Hedau et al. (2009)
which deals with indoor scene interpretation given a single view, and Ess et al. (2009)
which merges multiple visual recognition components for understanding outdoor video
sequences.
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Hedau et al. (2009) interprets an image of a cluttered room, simultaneously modeling the
room as a 3D box and segmenting out the clutter in the room. To estimate the orientation
of the room box, the approach utilizes the concept of vanishing points. A vanishing
point (Hartley and Zisserman, 2004) is a 2D point in a perspective projection, where the
images of parallel 3D lines intersect (due to a perspective camera). They calculate the
intersection points for all line pairs extracted from the test image, and use a voting-based
filtering approach to minimize angular deviation between the individual line segments
and candidate intersection points. This procedure outputs a set of 3 vanishing points,
corresponding to projections of 3 mutually orthogonal directions, thus fixing the room
orientation. Next, it hypothesizes many box layouts from these points to obtain translation
of the (room) box. These hypotheses are ranked by a discriminative regression approach
whose parameters are learned (offline) on a set of labeled training images. In an
alternating fashion, the algorithm also keeps labeling the clutter (by classifying groups
of similar pixels), defined as the objects lying on the floor and the objects occluding
the current box outlines. The key insight is that a good estimate of the room box leads
to better localization of clutter, and a good localization of clutter in turn leads to better
estimates of the room box. They demonstrate clearly superior performance using this
joint estimation approach as compared to indepedent estimation - strongly advocating
3D contextual reasoning.

Automotive navigation applications have inspired a number of coarse scene understand-
ing attempts (Geiger et al., 2011; Wojek et al., 2013) in recent years, particularly since
the work of Ess et al. (2009). Ess et al. (2009) utilize a moving stereo rig to model a
dynamic street scene, integrating a number of modules including object class detectors,
ground plane and visual odometry estimation, 3D object tracking as well as occlusion
reasoning. Object class detection for cars and bicycles, is achieved by HOG detectors - a
single detector for pedestrians, and a bank of seven viewpoint-specific detectors for cars.
However the approach verifies the 2D detections thus obtained, by enforcing that multiple
objects cannot occupy the same 3D space. It models a temporally varying ground plane,
whose joint estimation together with objects, improves the accuracy of both these com-
ponents. For visual odometry, it masks out the detected objects, to use features only from
the static portions of the scene thus improving localization accuracy. The approach also
models object-object occlusions and leverages this knowledge to keep object hypothe-
ses alive even when they get fully occluded. To this end, it benefits from a motion-model
for updating its estimates of even completely hidden objects. Thus the system benefits
from the synergy among various visual recognition and estimation modules – empirically
demonstrating improved performance for all the individual estimation tasks.

1.3.6 Fine-grained scene modeling
The approaches described in the previous section already give improvements over
independent object-level detections, by coarsely modeling in 3D and employing con-
textual reasoning. However some researchers in the early days of computer vision had
already considered reasoning at a much finer granularity than 2D or 3D bounding box
representations. Unfortunately these attempts did not provide significant benefit over
independent modeling of scene elements, owing to the limited computational capacity
of the day which becomes a serious bottleneck as the degrees of freedom of the
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configuration space grow, as well as lack of powerful discriminative methods, robust
descriptors, and optimization approaches.

One impressive and very detailed system is presented in Haag and Nagel (1999), for the
task of traffic scene modeling from an elevated camera. The system employs a calibrated
camera together with detailed polyhedral models of vehicles, buildings, traffic poles, and
trees. It even includes an illumination model to predict shadows of moving objects as well
as static scene elements. The motion of the moving objects is tracked through optical
flow and Extended Kalman Filter (EKF) updates. Optical flow represents the 2D motion
in image plane that each pixel undergoes between consecutive frames of a video, and
an EKF models the motion of an object as a Gaussian distribution, predicting object
displacement for the next frame and updating its belief based on image evidence (here,
image edge information). Occlusions, shadows, and metric depths are all computed by
ray casting in an explicit geometric model of the scene. Except for the tracking process,
they needed to provide all the information manually: the initial object detections and
correct 3D object model estimates, the scene model (polyhedral models for building,
trees, polls), as well the sun light direction for illumination modeling. Unfortunately,
matching image edges with model edges is very error-prone and often causes incorrect
matches due to spurious background edges, thus even the tracking is not robust. While
practically the system does not perform well, clearly the extent of the modeling was far
ahead of its time and inspirational.

During the time frame of this thesis, some approaches have been developed, which focus
on detailed 3D scene-level modeling and have been successful in leveraging on the
greater expressiveness of their models. One notable system is the Spatial Layout Model
(SLM) (Xiang and Savarese, 2013), which builds upon ALMs (Xiang and Savarese, 2012)
discussed in Section 1.3.4. Since the large planar segments of ALM are not flexible
enough for occlusion reasoning, they are decomposed into smaller “Atomic Aspect Parts
(AAPs)”. Like our method (Chapter 5), SLM also utilizes a ground plane assumption,
albeit in the form of a soft penalty term in the objective function that pulls objects to
stand on a common ground plane, as well as a term penalizing overlap between two 3D
objects. They additionally bias their objective function towards closer objects (in terms
of distance from the camera), and consider 2D object detection scores in deciding the
depth ordering (higher detection score likely corresponds to a closer object). Also similar
to our first stage, SLM generates many “aspectlets” which are configurations of adjacent
AAPs (HOG templates). The aspectlets perform Hough voting to obtain the full object
2D bounding boxes. The only mode of occlusion considered in the system is that by
other detected objects (equivalent to our “deterministic occlusion reasoning”, Chapter 5),
but no way of modeling partial occlusions caused by unmodeled scene elements (as
done by our “searched occluder”, Chapter 4). The inference is based on reversible
jump Markov Chain Monte Carlo (RJMCMC) algorithm, which is a key theoretical
strength of this approach and allows adding and deleting new objects from the 2D de-
tection stage during inference. On the other hand it may be difficult to reproduce and tune.

Another system that has grown in parallel to this thesis is the “Bayesian room” under-
standing system of Del Pero et al. (2012, 2013). This system builds on top of a coarse
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parallelepiped room model (Hedau et al., 2009) as discussed in Section 1.3.5, adding
detailed 3D furniture models inside the room. The objects (furniture) like chairs, beds,
tables, cupboards are all represented by configurations of deformable cuboids with ap-
propriate aspect ratios, learnt over training images. They utilize a combination of low-level
and high-level cues to model appearances: (i) explicit reasoning about edges (presence,
absence and noise edges), (ii) surface orientations determined by checking alignment
against global cuboid (room) orientation, (iii) semantic pixel labeling into object, floor,
ceiling, walls like Hedau et al. (2009), and (iv) self-similarity based on color distribution.
Inference is tuned separately for different scene elements e.g. to detect peg structures
where furniture legs meet the floor. The system further employs high-level contextual
relationships among full objects, e.g. random sample generation (for inference) is biased
to propose chairs near tables. Like Xiang and Savarese (2013), they also use a variation
of RJMCMC for inference, allowing addition, deletion, and switching of object hypotheses
at inference time, avoiding early commitment to number and type of objects.

Like the present thesis, these very recent approaches highlight the benefits that detailed
3D scene-level reasoning can now bring to visual recognition. Not only do such rich mod-
els deliver greater information in terms of 3D scene layout, but joint reasoning is also
found to improve individual recognition rates for all the scene elements.

1.4 Relevance to science and economy

The contributions made in this thesis are directly applicable towards the solution of im-
portant challenges in robotic perception and planning as well as in augmented reality. In
the following we mention some problem domains where our ideas can have an immediate
impact.

1.4.1 Markerless Augmented Reality

Most current augmented reality (AR) systems establish alignment between the real
and virtual worlds through well-textured planar templates (Chen et al., 2009; Wagner
et al., 2010). However the world is three dimensional and most object classes are not
well-textured. The applicability of AR systems can be widely extended if fine-grained 3D
geometric structure of object classes and scenes from images can be recovered. Recent
work of Hengel et al. (2007) attempts to extract such detailed higher-level 3D models
for specific object instances and scenes but it requires video (to reconstruct the scene)
as well as user interaction. The techniques developed in this thesis allow semantic
recognition, 3D pose estimation, and recovery of plausible 3D geometry even for partly
occluded objects from single images, apart from scene-level reasoning and provision of
supporting-plane hypotheses. Such detailed interpretation enables accurate registration
of virtual information into complex real-world images. Since the system does not require
complex sensing modalities like laser range sensing, and is massively parallelizable in its
current form, it has the potential to be useful for mobile AR applications.

Economic potential. Mobile AR is seeing rapid development and turning into a big busi-
ness, with heavy investment coming from industry giants such as Qualcomm. As opposed
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to approaches based on markers or explicit scene reconstruction which can only be ap-
plied under controlled settings, semantic reconstruction can be applied anywhere e.g. to
project animated characters into a street scene in real-time, or provide live high-resolution
interactive experiences in a classroom environment. Thus there exists potential to lever-
age on this relatively unexplored technique (i.e. semantic reconstruction) in the context of
augmented reality applications.

1.4.2 Mobile robotics - localization and mapping

Simultaneous Localization and Mapping (SLAM) is a technique to build a map of an
unknown environment as a mobile robot explores it, while at the same time localizing the
robot w.r.t. the map. Most SLAM research is focused on mapping and tracking low-level
features, such as interest points (Davison et al., 2007; Klein and Murray, 2007), or
reconstructing denser representations2 comprising of point clouds or geometric meshes
as in Newcombe et al. (2011). After two decades of exclusive focus on “low-level” SLAM
approaches, interest is now shifting towards integration of semantic concepts into SLAM
pipelines by incorporating planar structures (Schindler and Bauer, 2003; Gee et al.,
2008), coarse 2D object class detections (Cornelis et al., 2008; Bao and Savarese,
2011), and even specific 3D object detections (Fioraio and Stefano, 2013; Salas-Moreno
et al., 2013). This interest springs from the fact that it is still not possible to accurately
reconstruct textureless objects such as walls, and highly specular objects such as cars,
and problems such a multi-body SLAM (SLAM for dynamic scenes) can benefit a lot from
higher-level regularization. Besides, use of higher-level objects as building blocks causes
the representation to get much sparser and localization accuracies tend to improve.
Thus, the detailed 3D object class model developed in this thesis, as well as higher level
reasoning (e.g. deterministic occluder reasoning) can eventually be integrated into SLAM
pipelines.

Economic potential. There are huge investments being made in the domain of au-
tonomous driving and driver assistance systems by all big automotive manufacturers as
well as technology giants like Google. Unfortunately, the most successful practical exam-
ples remain the ones utilizing pre-mapped environments and prohibitively expensive laser
range sensing (e.g. Google’s initiative which is based on the Velodyne sensor). To make
the technology economically feasible and broadly applicable (e.g. in regions where such
dense maps may not be available), there is a need to strengthen strengthen 3D scene
reasoning from monocular or stereo cameras. Thus our semantic 3D scene understand-
ing approach is particularly relevant, even more so since our experimentation has focused
on street scenes.

1.4.3 Metrology and content-based search

Further practical applications that may be facilitated include image-based metrology
and content-based retrieval. Consider e.g. forensics, where in the absense of planned
photogrammetric record, 3D reconstruction from single random photographs, could be

2also called Structure from Motion or SfM



30 CHAPTER 1. INTRODUCTION

helpful in detailed understanding of a scene.

In the context of digital 3D databases, such models could help in a myriad of ways for
searching objects in 3D databases; possibly even enhancing such databases by allowing
learning model characteristics such as texture and partial shape from images (Zia et al.,
2009).

1.4.4 Scientific and Industrial recognition
The work presented in this thesis has received several awards and scholarships from
both academia and industry: (i) a Best Paper Award from Microsoft Research for Zia et al.
(2011), (ii) a Best PhD Student award for an extended poster on Zia et al. (2013) from
International Association for Pattern Recognition (IAPR), and (iii) a Qualcomm Innovation
Fellowship 2012 (worth 10,000 EUR) for the initial proposal of Zia et al. (2014a,b).



Chapter 2

Background

We have already explored the key ideas from literature that are relevant for this thesis. In
this chapter, we introduce the tools that we build upon in the upcoming “core” chapters
(i.e. Chapter 3, 4, 5). While complete text books are available discussing each of these
tools in great depths, we tailor our treatment to the aspects most relevant to understand-
ing the system developed in this thesis. The discussion starts with local image descriptors
which are used in our approach to represent the local appearance of the parts of our ob-
ject classes, such as the appearance of the wheels of a car or the handle of a bicycle. We
further discuss discriminative classification techniques, which are later used to actually
detect these parts in a test image. Next, we describe the detailed 3D geometry model
used to represent object classes in our approach. And finally, we specify the basic infer-
ence algorithm that we build upon in later chapters to detect and reconstruct full object
instances and reason about their interactions.

2.1 Local image descriptors

Local image patches, represented by image descriptors, form the basis of an important
portion of computer vision applications: image matching (Tuytelaars and Gool, 2000;
Brown and Lowe, 2003), object detection (Leibe et al., 2006; Liebelt et al., 2008), and
texture recognition (Lazebnik et al., 2003), to mention just a few. An image patch can be
“described” directly by a vector of pixel intensities, as sometimes done to establish corre-
spondences between points in images of the same scene, by computing sum of absolute
differences, sum of squared differences, or normalized cross-correlation between these
vectors. However, it is often preferable to encode the patch by an attribute that is relevant
to the task at hand. For example in the case of texture classification, the spatial fre-
quency content of the image patch is important, whereas for object detection, describing
the local shape which usually comprises of a non-repetitive structure, by gradient orienta-
tions is more informative. Furthermore, descriptors should be invariant to relevant imaging
variations, such as lighting changes or local affine transformations. An array of descrip-
tors tuned for different tasks have been proposed in the literature (see Mikolajczyk and
Schmid (2005) for a detailed survey). We already mentioned the Histogram of Oriented
Gradients (HOG) descriptor of Dalal and Triggs (2005), which is a global descriptor for a
larger window, encoding object class appearance in Section 1.3.1. The most well-known
local descriptor is Scale Invariant Feature Transform (SIFT) of Lowe (2004), which en-
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Figure 2.1: Shape Context descriptor. (a) and (b) show two example shapes. (c) visualizes
the histogramming for location marked ♦ in (a). (d), (e), and (f) visualize the histograms
evaluated at locations marked by ♦, �, © in (a) and (b). Illustration reproduced from
Shape Context (2013) published under Creative Commons license.

codes an image region by histograms of gradient orientations computed over rectangular
sub-regions inside the image patch of interest. For each sub-patch, a separate gradient
orientation histogram is computed, which are combined together to form the descriptor
for the image patch. The vector is normalized to a unit vector to achieve some degree of
invariance to illumination changes. Here we discuss the Shape Context (SC), introduced
by Belongie et al. (2000). We use a variant of SC from Mikolajczyk and Schmid (2005) to
represent local part appearances in our system (Chapter 3).

2.1.1 Shape Context

The original Shape Context descriptor (Belongie et al., 2000) at an edge pixel (point of
interest), is a histogram of relative coordinates of randomly sampled points on the shape.
The relative coordinates of the sampled points are transformed to log-polar space, to
fill bins that are defined according to a log scale. The logarithmic distance binning is
motivated by the increase in positional uncertainty as the distance from the point of
interest increases, i.e. we expect nearer points on the shape to maintain their relative
position, however farther away points are allowed to be displaced more. This allows the
representation to be robust to locally affine transformations of the shape. The approach
uses 5 bins for logarithm of distance and 12 bins for angular dimension in their original
implementation. Figure 2.1 shows a toy example illustrating the approach.

We use the implementation of Mikolajczyk and Schmid (2005) to represent the local ap-
pearance of our object parts (Chapter 3). This variant captures the distribution of local
gradient orientations as opposed to counting the relative edge pixel locations, on the
same log-polar histogram. The pixel intensities for the patch are normalized by adjusting
their mean and variance to fixed values to make the descriptor invariant to illumination
changes. The performance of part-level localization in the context of fine-grained object
class recognition is compared for different descriptors (including different variants of SIFT)
in Andriluka et al. (2011), in a setting very similar to ours. They show superior results for
this variant of shape context descriptor, which they attribute to finer gradient discretization,
use of gradients as opposed to edge-based features, and log-polar spatial binning.
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Figure 2.2: Classification. (a) Linearly separable classes, (b) linear classifier, (c) more
realistic example without linearly separable classes, (d) combination of linear classifiers
to perform non-linear classification.

2.2 Classification

A classifier is a function f(x) : Rd x C, which predicts the class label y = f(x) of
an input data point x ∈ Rd, out of a set of discrete class labels C = {C1, C2, ..., CM},
after learning the intended class memberships from a set of labeled training examples
{(x1, y1), (x2, y2), ..., (xN, yN)}. One example application is to predict whether or not it will
rain on a certain day based on temperature, humidity and pressure; learnt on many past
observations.

The simplest case is that of linearly separable classes, which can be separated by a
hyper-plane in Rd. Figure 2.2 (a) and (b) visualizes such a case, for d = 2,M = 2.
However, the more general case is that of classes which are not linearly separable (Fig-
ure 2.2 (c)). One way of handling such cases is to approximate the non-linear classifica-
tion boundaries as a combination of simple (e.g. linear) classifiers (Figure 2.2 (d)). We
describe two such algorithms below, which we utilize in Chapter 3 to classify local image
patches (encoded as dense shape context descriptors), as one of the object’s parts or
background.

2.2.1 AdaBoost

AdaBoost is an algorithm introduced by Freund and Shapire (1996), which trains a
number of “weak classifiers” (such as axis-aligned one-dimensional decision thresholds)
on the training examples. The classifiers are trained sequentially by iteratively adjusting
the weights of data points based on their classification accuracy with the previous
classifier.

We describe the procedure as Algorithm 1, following the notation of Bishop (2007). The
basic algorithm considers two classes labeled from C = {−1,+1}. The weight of the
training data points {(x1, y1), (x2, y2), ..., (xN, yN)} are specified by wn. The key idea is to
train weak classifiers f (t)(x) one after another, and increase the weights of misclassified
data points before the next iteration, to focus the next weak classifier on the “difficult”
data points..
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Figure 2.3: Decision tree classifier. (a) A 2-dimensional input space with the training ex-
amples for a 4-class case, and recursive 1-dimensional decision stumps visualized. (b)
Decision tree learned over the training data visualized, where each node represents a
portion of the input space. The non-leaf nodes also have an associated decision stump.
The likelihoods of class-membership for each leaf node are also visualized.

At test time, the class of an unseen data point is the weighted sum of predictions from
weak classifiers, using classifier weights α(t). Specifically, the class of a test data point x
is described by,

y = f(x) = sign
( T∑
t=1

α(t)f (t)(x)
)

(2.1)

The algorithm is very straight-forward to implement and requires almost no parameter
tuning (except maximum number of iterations T ). However the approach cannot directly
handle multiple classes, as required in the context of classifying an image patch into one
of many object parts. Extensions to achieve multi-class classification exist, but they are
slow and not principled. Further, we empirically found that it cannot model part appear-
ances as seen from different viewpoints as a single class (Chapter 3; Zia et al., 2011).
In our investigations, we found another technique to be more suitable for our problem,
namely the Random Forest classifier which we discuss next.

2.2.2 Decision trees and Random Forest
Another classification scheme that can combine weak classifiers to approximate highly
non-linear and multi-modal class boundaries is the decision tree architecture (Breiman,
1984; Quinlan, 1986). A decision tree represents a recursive binary partitioning of
the input space, as illustrated in Figure 2.3. It uses a simple decision (such as a one-
dimensional decision stump) at each non-leaf node of the tree. Classification is performed
by “dropping” down the test data point from the root, and letting it traverse a path decided
by the node decisions, until it reaches a leaf node. Each leaf node has a corresponding
probability distribution (learnt on training data), which specifies the likelihood of the test
point belonging to different classes. In Figure 2.3 (a) the class memberships for the
labeled training examples are shown, on which the tree structure and class-membership
likelihoods in (b) are learned. For the unseen test point, represented by the question
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Input: Training set: {(x1, y1), (x2, y2), ..., (xN, yN)} with yn ∈ C = {−1,+1}.
Output: Set of T simple classifiers {f (1)(x), f (2)(x), ..., f (T )(x)} and corresponding
weights {α(1), α(2), ..., α(T )}.
1. Initialize weights of training data points, w(1)

n = 1
N

2. for fixed number of iterations: t = 1, ..., T do
(i) Learn a simple classifier f (t)(x) on the training set, maximizing the sum of
weights corresponding to correctly classified data points:

N∑
n=1

w(t)
n I
(
f (t)(xn) 6= yn

)
where I

(
f (t)(xn) 6= yn

)
is equal to 1 for an incorrectly classified data point

f (t)(xn) 6= yn and 0 for f (t)(xn) = yn.
(ii) Calculate the normalized weight α(t) for the simple classifier learned in the
current iteration:

ε(t) =

N∑
n=1

w(t)
n I
(
f (t)(xn) 6= yn

)
N∑
n=1

w(t)
n

,

α(t) = ln

{
1− ε(t)

ε(t)

}

(iii) Re-calculate the weights of training data points, based on current
classifier weight α(t) as well as whether or not a training example is correctly
classified with the current classifier:

w
(t+1)
n = w

(t)
n exp

{
α(t)I

(
f (t)(xn) 6= yn

)}
end

Algorithm 1: AdaBoost algorithm training (based on the notation of Bishop (2007)).
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mark in Figure 2.3 (a), it is straight-forward to start at the top of the tree in Figure 2.3 (b)
traversing the tree by following the binary decisions at the nodes to reach a leaf node B.
Here we see that the corresponding region in the input space is B, for which the most
likely class membership is Class 2.

Learning tree structure. Estimating the optimal structure including the number of nodes,
the dimension of data point to be considered at each node, as well as the corresponding
threshold to minimize training error is computationally infeasible for most problems of
practical interest. Thus, a greedy approach is often utilized starting at the root node, and
growing the tree by sequentially adding nodes which take locally optimal decisions on
the training data (Bishop, 2007). Each new node corresponds to a region of the input
space, divided into two sub-regions by the decision function on the node. To estimate the
optimal decision function that best divides the region, a local search is performed (often
exhaustive) for an input space dimension and the corresponding threshold value which
optimizes a measure of class segmentation at the node. The local measures of class
segmentation which are most commonly used in this context are cross-entropy and the
Gini index. Following the notation of Bishop (2007), let pτCm represent the proportion of
training data points in Region τ belonging to class Cm, where m = 1, ...,M , and k be the
threshold value, then cross-entropy is described as

Qτ (k) =
M∑
m=1

pτCmln
(
pτCm

)
(2.2)

and the Gini index

Qτ (k) =
M∑
m=1

pτCm

(
1− pτCm

)
(2.3)

Different approaches can be utilized to decide when to stop adding further nodes, e.g.
stopping when the training classification error falls below a threshold or when a certain
maximum depth is reached.

Bagging and Random Forests. Breiman (1996) and Amit and Geman (1997) proposed
combining de-correlated classifiers, which is called Bagging (short for Bootstrap aggre-
gating), and showed that it helps with the problem of overfitting to training data and thus
improves classification accuracy on unseen data points. Decision trees individually tend to
overfit, but they are efficient so running multiple trees is feasible, and it is straight-forward
to average their outputs. Such an ensemble of multiple decision trees is called Random
Forest.In order to learn multiple de-correlated trees (Breiman, 2001) over a training set,
randomization can be employed at different points in the tree learning process. This in-
cludes learning different decision trees on randomly picked subsets of the training set, or
randomly choosing the input space dimension in which to perform the local decision at
different nodes. The results can be combined by averaging the class-conditionals from the
individual trees. Random Forests are inherently multi-class, readily parallelizable owing
to independently grown and evaluated trees, and straight-forward to tune. In our investi-
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gations (Chapter 3), we also found them well suited to model multi-modal distributions. In
recent years, Random Forests have been increasingly applied to computer vision prob-
lems (see Leistner (2010) for a treatment focused on computer vision applications).

2.3 Point-based shape analysis

Reconstructing 3D object shape from a single view is an ill-posed problem, and needs
strong shape priors. Unfortunately the part-based models most commonly used in the
context of object class detection (Section 1.3.1) only loosely model object shape, e.g.
as a star topology with the part locations learned relative to a root part as Gaussian
distributions (Stark et al., 2010). Thus such models do not constrain the overall object
geometry enough to recover it from noisy part detections, and are limited to providing 2D
bounding box detections only. One successful technique for detailed shape modeling is
the classic Active Shape Model (ASM) of Cootes et al. (1995), which strongly constrains
the relative part locations, always outputing globally plausible geometry as learnt on a
training set. It provides a deformable wireframe representation based on a set of vertices
of the object class of interest. The allowable global deformations are described by a
handful of displacement vectors for all vertices, which are then linearly combined. We
describe this approach in detail next.

ASM learns a shape basis on a set of training shape exemplars for an object class with a
well-defined topology. Each aligned shape exemplar is represented by a vector of relative
vertex locations, with each vertex representing the location of a well-defined “landmark”
point on the shape, e.g. corners of bumper, fenders, roof, centers of wheels, and so on
for representing the shape of the car class. A weighted sum of the shape basis vectors
equals a new shape within the shape space defined by the training shape exemplars.

Let the shape of n training exemplars be represented by the relative 3D locations of their
m vertices as: xi = [x1i,x, x

1
i,y, x

1
i,z, x

2
i,x, x

2
i,y, x

2
i,z, ..., x

m
i,x, x

m
i,y, x

m
i,z]

T , where i ∈ {1, 2, ..., n}.
The exemplars are aligned to each other and centered at the origin.

We can calculate the mean shape µ as,

µ =
1

n

n∑
i=1

xi (2.4)

and the mean-shifted shape examples as,

x̃i = xi − µ. (2.5)

We next collect the training shapes in a matrix,

X̃ = [x̃1, x̃2, ..., x̃n]T (2.6)

and calculate the covariance matrix as,

C =
1

n− 1
X̃X̃T . (2.7)



38 CHAPTER 2. BACKGROUND

+2.7σ1p1 
-2.7σ1p1 

.. .. 

+2.7σ1p1 
-2.7σ1p1 

.. .. 

Figure 2.4: 3D Deformable Wireframe models for cars and bicycles. Shapes are sampled
from shape model, and the vertex locations connected by manually defined edges.

The eigen-vectors pk of the covariance matrix C represent the principal shape deforma-
tions for the object class represented by the training exemplars xi, which are ranked in
order of importance by arranging the corresponding eigen-values. Thus, σ1 represents the
largest standard deviation corresponding to the eigen-vector p1 which represent the direc-
tion of shape deformation along which the largest variation exists in the training dataset; σ2
and p2 represent the second largest shape deformation direction, and so on. The eigen-
vectors corresponding to small eigen-values usually represent noise variations, and can
be discarded. We can represent the Eigen-value decomposition as,

C = QΛQ−1 (2.8)

where, Q = [p1,p2, ...,p3m] and Λ = diag(σ2
1, σ

2
2, ..., σ

2
3m).

Using the principal component directions, and a set of shape weights s = {s1, s2, ..., sk}
we can then synthesize any shape within the shape space even by using an r < 3m
(which causes some variation in the training data set to be neglected),

X(s) ≈ µ+
r∑

k=1

skσkpk (2.9)

Setting shape weights |sk| < 3, results in shapes which are within the variations repre-
sented in the training set, since 3 times standard deviation from the mean corresponds to
99.7% of the probability mass for a Gaussian. Figure 2.4 visualizes the learned shapes,
for cars and bicycles, trained on a set of labeled 3D CAD models. The car and bicycle
wireframes in the middle are the mean µ shapes for the respective models.

2.4 Smoothing-based optimization

Whenever a task is defined well enough to formulate it mathematically (as an objective
function), finding the “best” solution is called optimization. The standard methods for local
optimization include 1st-order approaches (based on Jacobian of the objective), which
starting from an initialization take successive steps proportional to the local gradient of
the function, and 2nd-order approaches (based on Hessian of the objective) which locally
approximate the objective function as a quadratic. Further, many approximations to these



2.4 Smoothing-based optimization 39

methods such as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm (Broyden
et al., 1973; Shanno, 1970) have been proposed which provide various useful properties,
such as cheaper computation. However, these approaches cannot reach the global
optima for any but a few restricted families of functions, such as quasi-convex functions
in the continuous domain (Boyd and Vandenberghe, 2004).Unfortunately, no approach
exists which can guarantee reaching a global optimum (within reasonable time) for
many types of objective functions of practical value. A number of meta-heuristic search
methods have been proposed which are found useful in many cases providing good
local optima despite having weak theoretical justifications, such as Tabu search (Glover,
1986) and Evolutionary algorithms (Rechenberg, 1971; Holland, 1975). Besides, some
algorithms which possess better theoretical properties (related to convergence and
input space coverage) such as the Monto-Carlo methods (Metropolis and Ulam, 1949;
Metropolis et al., 1953) and the Particle filter (Isard and Blake, 1998) have also been
proposed for this task, which have been explored more in the context of computer vision
problems.

We also encode our requirements for 3D deformable wireframe fitting over image
evidence, in the form of objective functions (Chapters 3, 4, 5), which are defined
over a mixed set of both continuous and discrete variables, and are high-dimensional
and non-convex. Thus, we resort to a simulation-based optimization scheme, where
starting from a set of initializations, we iteratively refine the initializations in a stochastic
gradient descent procedure, inspired by the Smoothing-based Optimization algorithm of
Leordeanu and Hebert (2008). We next describe this algorithm, and provide an intuitive
motivation without a formal background (which can be found in the original paper).

The algorithm is motivated by two key ideas, which we describe in the following:

1. Smoothing out weak optima. Smoothing the objective function with a Gaussian
kernel wipes out shallow local minima due to noise, making it easier to localize the
significant ones. Figure 2.5 illustrates the idea on a function with many local optima, for
increasing variance of the Gaussian smoothing kernel. Note how a kernel with greater
variance causes a greater number of local optima to disappear. Unfortunately, since the
Gaussian kernel has infinite support, the entire space needs to be visited even to smooth
the original function at a single point. Thus, the idea cannot be applied to optimization
in its direct form, and we instead resort to locally sampling the objective function and
directly computing a smoothed estimate of a strong local optimum.

2. Iterative update. The algorithm represents its current estimate of a local optimum with
a Gaussian distribution. The estimate is refined iteratively, by evaluating the objective
function at points in the region of high probability mass of the Gaussian distribution.
These evaluations are used to improve the Gaussian estimate and move it closer to a
strong optimum value.

Algorithm 2 presents the approach explicitly, optimizing over an objective function f(x),
and Figure 2.6 visualizes an example objective function as well as the Gaussian distri-
bution representing the current estimate of a strong local optimum, at different iterations.
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Initialization: Mean and variance of Gaussian distribution representing our
estimate at iteration t = 0: µ(0) and σ(0),.
while σ(t) < ε do

(i) Draw a set of samples {s1, s2, ..., sm}, from the normal distribution
N (µ(t), (σ(t))2I).

(ii) Set: µ(t+1) =

m∑
k=1

skf(sk)

m∑
k=1

f(sk)

, σ(t+1) =

√√√√√√√√√
m∑
k=1

(sk − µ(t))2f(sk)

m∑
k=1

f(sk)

(iii) t = t+ 1
end

Algorithm 2: Smoothing-based Optimization algorithm, following Leordeanu and
Hebert (2008).

Figure 2.5: Smoothing. As the variance of smoothing Gaussian kernel is increased, more
and more of the noisy local optima disappear.

Instead of smoothing over the entire space, we sample over a small region surrounding
the current estimate of the optima in line (i). Next, in line (ii), we calculate a mean position
µ(t+1), weighted by the objective function values at the sampled points f(sk) which dis-
places our estimate towards a strong peak of the function. The standard deviation σ(t+1)

of the Gaussian is re-calculated for the estimate, which automatically grows to escape
from valleys and narrows when a strong hill is reached. The algorithm terminates when
the standard deviation becomes smaller than a threshold ε.



2.4 Smoothing-based optimization 41

Figure 2.6: Algorithm iterations. Objective function visualized in blue. Estimate of maxima
location represented by Gaussian distribution as a dashed red curve.
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3.1 Abstract

Geometric 3D reasoning at the level of objects has received renewed attention recently,
in the context of visual scene understanding. The level of geometric detail, however,
is typically limited to qualitative representations or coarse boxes. This is linked to the
fact that today’s object class detectors are tuned towards robust 2D matching rather
than accurate 3D geometry, encouraged by bounding-box based benchmarks such
as Pascal VOC. In this paper, we revisit ideas from the early days of computer vision,
namely, detailed, 3D geometric object class representations for recognition. These
representations can recover geometrically far more accurate object hypotheses than
just bounding boxes, including continuous estimates of object pose, and 3D wireframes
with relative 3D positions of object parts. In combination with robust techniques for
shape description and inference, we outperform state-of-the-art results in monocular
3D pose estimation. In a series of experiments, we analyze our approach in detail, and
demonstrate novel applications enabled by such an object class representation, such
as fine-grained categorization of cars and bicycles according to their 3D geometry, and
ultra-wide baseline matching.

Keywords: 3D Representation, recognition, single image 3D reconstruction, scene
understanding, ultra-wide baseline matching
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3.2 Introduction

Over the last decade, automatic visual recognition and detection of semantic object
classes have made spectacular progress. It is now possible to detect and recognize
members of a semantic object categories with reasonable accuracy. Based on this devel-
opment, there has been a renewed interest in high-level vision and scene understanding,
e.g. Hoiem et al. (2008); Ess et al. (2009); Wang et al. (2010); Hedau et al. (2010); Gupta
et al. (2010); Barinova et al. (2010); Wojek et al. (2010).

The present work starts from the observation that although modern object detectors are
very successful at finding things, the object hypotheses they output are in fact extremely
crude: typically, they deliver a bounding box around the object in either 2D image space
(Viola and Jones, 2001; Dalal and Triggs, 2005; Felzenszwalb et al., 2010) or 3D object
space (Liebelt and Schmid, 2010; Hedau et al., 2010; Payet and Todorovic, 2011). That
is, the detected object is represented by a box, which differs from other objects only by
its size and aspect ratio. We believe that such simplistic object representations severely
hamper subsequent higher-level reasoning about objects and their relations, since they
convey very little information about the objects’ geometry.

Figure 3.1: Fully automatic shape and pose estimation results. (Left) overlaid closest
training 3D CAD model. (Right) reconstruction of object shape, pose, and camera pose
(CAD model rendered from novel viewpoint using original image as texture).

We thus try to take a further step towards the ultimate goal of scene-level image
understanding, by looking back at ideas from the early days of computer vision. Starting
from Marr’s seminal ideas (Marr and Nishihara, 1978), many 3D models of objects
were proposed, which provided rich and detailed descriptions of object shape and
pose (Brooks, 1981; Pentland, 1986; Lowe, 1987; Koller et al., 1993; Sullivan et al.,
1995; Haag and Nagel, 1999). Unfortunately, these models proved difficult to match to
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real world images. As a consequence, later researchers traded off model accuracy for
robustness in matching, for example by representing objects by the statistics of local
features in an image window. This has led to impressive performance for recognition of
a variety of object classes (Everingham et al., 2010) as well as related tasks like scene
classification (Lazebnik et al., 2006), but the extent to which relations between scene
entities can be modeled with such representations is rather limited. Also, we note that
the recognition performance of 2D appearance representations at present is showing
only small improvements and seems to be saturating (e.g. at ≈35% average precision for
the well-known PASCAL VOC challenge Everingham et al., 2010). Although per se this
does not mean that more complex models are the way to go, it does raise the question
whether some of the difficulties could be overcome with 3D models, which allow one to
segment, reconstruct, and recognize in a more integrated fashion.

Over the last couple of years researchers have explored coarse “box-level” represen-
tations of 3D geometry in the context of scene understanding (Hoiem et al., 2008; Ess
et al., 2009; Wang et al., 2010; Hedau et al., 2010; Gupta et al., 2010; Barinova et al.,
2010; Wojek et al., 2010), and have shown that 3D geometric reasoning is not only
interesting as a goal in itself, but that the additional information it supplies also leads
to better recognition performance. In this work, we try to go one step further. Inspired
both by early work on 3D recognition and by more recent advances in 2D appearance
descriptors, we combine detailed models of 3D geometry with modern discriminative
appearance models into a richer and more fine-grained object representation.

Using a 3D model naturally affords invariance to viewpoint. While viewpoint-invariant
detection has been a hot topic for some time now (Schneiderman and Kanade, 2000;
Thomas et al., 2006; Yan et al., 2007; Ozuysal et al., 2009; Arie-Nachimson and Basri,
2009; Zhu et al., 2010; Stark et al., 2010; Gu and Ren, 2010; Payet and Todorovic, 2011;
Glasner et al., 2011; Villamizar et al., 2011; Pepik et al., 2012b), most approaches are
made up of several flat viewpoint-dependent representations connected together in one
way or the other. There are some more recent works which model the 3D geometry more
explicitly (Bourdev and Malik, 2009; Liebelt and Schmid, 2010; Sun et al., 2010; Chen
et al., 2010; Pepik et al., 2012b). While these are an important step towards true 3D
recognition, they typically still deliver 2D or 3D bounding boxes as output, and there is
still room for improvement in the granularity of the output hypotheses.

System overview. We exploit the fact that for many important classes there are already
high-quality 3D models available, and start from a database of 3D computer aided design
(CAD) models of the desired object class as training data. After simplifying the raw
CAD models we apply principal components analysis to obtain a coarse 3-dimensional
wireframe model which captures the geometric intra-class variability. In order to capture
appearance, we train detectors for the vertices of the wireframe, which we call “parts”.
The training is also based on renderings of the (original, unsimplified) CAD models, such
that our model does not require any image annotation. We apply the model to two rather
different object classes, cars and bicycles.

At test time, we generate evidence for the parts by densely applying the part detectors
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Figure 3.2: Full system diagram.

to the test image. We then explore the space of possible object geometries and poses
by guided random sampling from the shape model, in order to identify the ones that best
agree with the image evidence. The system is schematically depicted in Figure 3.2.

Contributions. The paper makes the following contributions. (i) we show that for
certain object types classical 3D geometric object class representations better fulfill
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the requirements of detailed visual modeling, and deliver object hypotheses with much
more geometric detail than current detectors (see Figure 3.1). We believe this geo-
metric richness is an important ingredient for scene-level geometric reasoning. (ii) we
demonstrate that a 3D model enriched with local appearance descriptors can accurately
predict 3D object pose and shape from single still images. In particular, our model
improves over state-of-the-art results for pose estimation on a standard multi-view
dataset. (iii) we show the benefit of detailed geometric category models for a geometric
modeling task, namely ultra-wide baseline matching, where we successfully recover
relative camera pose over viewpoint changes up to 180◦, again improving over previ-
ous work. And (iv) we give experimental results on predicting more fine-grained object
categories (different types of cars and bicycles) based solely on the inferred 3D geometry.

Parts of this work have appeared in a preliminary conference paper (Zia et al., 2011). The
present paper introduces an appearance model based on random forests which is both
more accurate and much more efficient, a modified objective function for model-to-image
matching, and improved and extended experimental results, including the addition of the
challenging bicycle class.

The remainder of this paper is structured as follows. Section 3.3 reviews related work.
Section 3.4 introduces our 3D geometric object class model. Section 3.5 gives experi-
mental results, and Section 3.6 concludes the paper with an outlook on future work.

3.3 Related work

Our work attempts to recover detailed geometric 3D object representations from single
input images. As such, it is related to 3D geometric modeling from the earlier days of
computer vision, more recent advances in scene understanding, and multi-view object
class recognition, each of which we review in the following.

Early 3D modeling. Geometric modeling in 3D used to be an important component
of visual object recognition, from the inception of computer vision until about the mid
1990ies. Many systems (Roberts, 1963; Brooks, 1981; Pentland, 1986) were proposed
which built complex shapes from simpler primitives, such as polyhedra (Roberts, 1963),
generalized cylinders (Brooks, 1981), and super-quadrics (Pentland, 1986). With these
primitives, single objects as well as entire scenes were represented. Alternatively, salient
local parts of the 3D shape, such as triplets of line segments, were matched to their
image projections (Lowe, 1987). Hand-crafted, rigid 3D models were proposed to track
vehicles in scenes with static background (Haag and Nagel, 1999; Koller et al., 1993),
later extended to deformable models (Sullivan et al., 1995).
Unfortunately, while these models provided rich descriptions of objects and scenes,
robustly matching them to cluttered real-world images proved to be exceedingly difficult
at the time. Thus, later research abandoned them in favor of less expressive, but
more robust 2D models. These include sparse sampling at locally confined regions of
interest (Agarwal and Roth, 2002; Csurka et al., 2004; Leibe et al., 2006); modeling
the spatial relationship between these regions at different levels of detail (Fergus et al.,
2003; Felzenszwalb et al., 2010), or not considering such relations at all (Csurka et al.,
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2004); and densely sampling (usually gradient-based) features from the object’s extent in
2D (Dalal and Triggs, 2005).

Recent 3D modeling. With the advent of powerful computers and advances in machine
learning, it has become feasible to revisit some of the classical ideas of 3D object
modeling. In the context of indoor scene understanding, Wang et al. (2010) proposes a
method to infer the 3D layout of the walls and segment out the clutter objects, and Hedau
et al. (2010) shows that such 3D modeling not only provides a better interpretation of the
scene, but also improves 2D object detection performance. Along the same lines, Hoiem
et al. (2008) models interactions between objects, surface orientations, and 3D camera
viewpoint for outdoor scene understanding, and demonstrates improved performance
in object detection. Gupta et al. (2010) takes into account qualitative geometric and
mechanical properties of objects and model their relationships, in order to generate
qualitative 3D interpretations of outdoor scenes. Similarly, pedestrian and vehicle tracking
from mobile platforms has been demonstrated to benefit from 3D reasoning (Ess et al.,
2009; Wojek et al., 2010).

Inspired by this comeback of 3D scene understanding, our work aims to furnish the
underlying representations with a lot more geometric detail (Zia et al., 2011). By
combining a deformable 3D shape model with powerful local descriptors, we obtain
more detailed and more expressive object class models, that directly lend themselves
to detailed 3D reasoning about object and scene geometry. Recent works with similar
ambitions as ours are Xiang and Savarese (2012) and Hejrati and Ramanan (2012).
An object is represented in Xiang and Savarese (2012) as a collection of a few planar
segments in 3D space called “aspect parts” (e.g. one planar “aspect” for the bicycle
class, six for the car class). Like us they train on 3D CAD models, manually defining
the aspect parts for different object categories. Geometric relations are represented
in a similar way as in Savarese and Fei-Fei (2007), whereas pose is represented by
a discrete set of viewpoints. In Hejrati and Ramanan (2012), a 2D part-based object
model predicts the location of land marks, which is lifted to 3D in a second stage
by fitting a coarse 3D model to these land marks with non-rigid SfM. In our work,
we go even further in terms of 3D detail and predict in a continuous pose space. In
another paper Zia et al. (2013), we apply our representation to explicitly model occlusions.

Multi-view recognition. A closely related problem to ours is multi-view recognition,
which has received a lot of interest in recent years. The most frequently used approach
for that task are banks of viewpoint-specific detectors (Schneiderman and Kanade, 2000;
Ozuysal et al., 2009; Zhu et al., 2010; Stark et al., 2010; Villamizar et al., 2011;Payet
and Todorovic, 2011; Pepik et al., 2012b). Other approaches, while still relying on several
flat, viewpoint-specific representations, establish connections between viewpoints via
homographies (Yan et al., 2007), probabilistic morphing of object parts (Su et al., 2009),
discriminative mixtures of global templates (Gu and Ren, 2010), or by feature tracking
with integrated single-view codebooks (Thomas et al., 2006). One step further towards
true 3D recognition are models with rigid 3D configurations of local 2D features (Liebelt
et al., 2008; Arie-Nachimson and Basri, 2009; Glasner et al., 2011).

Similar to the renewed trend of 3D modeling on the scene-level, attempts are recently
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being made to explicitly represent 3D object class geometry alongside appearance.
A coarse, volumetric blob model is learned from 3D CAD data in Liebelt and Schmid
(2010), and combined with 2D appearance models, which have been learned from
annotated real-world images. The implicit shape model (Leibe et al., 2006) is augmented
in Sun et al. (2010) with the relative depth between codebook entries, obtained from a
structured light system. Pepik et al. (2012b) extend the deformable part model (DPM)
of Felzenszwalb et al. (2010) to include coarse viewpoint estimates in a structured
prediction framework, and enforce part correspondences across viewpoints by 3D
constraints.

While these approaches internally capture 3D object class geometry to some degree,
they typically still provide 2D bounding boxes and coarse viewpoint labels as their output,
and do not guarantee that the local parts are localized correctly. In contrast, our method
generates complete hypotheses of 3D object geometry, including continuous viewpoint
estimates with 5 degrees of freedom.

Efficient part detection. As the number of object classes and viewpoints increases, the
computational cost for appearance-based detection grows significantly. Several attempts
have been made to solve this problem by sharing information between object classes on
different levels, e.g. Salakhutdinov et al. (2011). Random Forests (Breiman, 2001) pro-
vide a natural way to perform classification with multiple classes, and allow sharing at the
level of weak learners inside the algorithm. They have successfully been used to train
detectors for interest points (Lepetit and Fua, 2006; Leistner, 2010). In our experience,
random forests also handle multi-modal distributions rather well. We use a single multi-
class random forest classifier with one class per object part, combining examples from
many different viewpoints in each class.

3.4 3D Geometric object class model

Decomposing object class representations into separate components for global layout
and local appearance is a widely accepted paradigm in object class recognition (Fergus
et al., 2003; Felzenszwalb et al., 2010). Its main advantages are the ability to account for
variations in object shape better than rigid template models, and robustness to partial oc-
clusion. The paradigm is often implemented by optimizing a smooth, continuous function
of the global layout at recognition time, e.g. in the form of tree-structured (Felzenszwalb
et al., 2010) or fully connected (Fergus et al., 2003) Gaussian densities over part posi-
tions. While these approaches have efficient implementations and have proven robust
in terms of image matching, the resulting object hypotheses are hard to interpret and
reason about in terms of geometry: deviations from geometrically plausible layouts are
merely penalized, but not rendered impossible, and in fact individual parts are misplaced
rather frequently.

Since we aim to not only detect the object, but also recover its geometry, we choose a
different route and generate only geometrically valid hypotheses to start with. In a second
step, we then verify that the generated hypotheses are supported by sufficient image evi-
dence, a strategy sometimes termed hypothesize-and-verify, or sample-based inference.
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We model an object class as a 3D wireframe representing global layout, with attached
local appearance representations of object parts. Like several other recent works in multi-
view recognition we leverage synthetic training data besides real-world images (Liebelt
and Schmid, 2010; Stark et al., 2010; Zia et al., 2011; Pepik et al., 2012b), and learn both
shape and appearance from a collection of 3D computer aided design (CAD) models,
thereby ensuring consistency between global layout and local part models by design.
At recognition time, we establish the connection between the 3D wireframe and the 2D
image by means of a projective transformation, which is part of the object hypothesis. The
transformation could potentially be shared among multiple objects in the same scene,
however this is not further explored here.

3.4.1 Global geometry representation and learning

Our global geometry representation is given by a deformable 3D wireframe, which we
learn from a collection of exemplars obtained from 3D CAD models. More formally, a
wireframe exemplar is defined as an ordered collection of n vertices, residing in 3D
space, chosen from the set of vertices that make up a 3D CAD model. In our current
implementation the topology of the wireframe is pre-defined (manually defined for each
object class, similar to Xiang and Savarese (2012)) and its vertices are chosen manually
on the 3D CAD models. In the future, they could potentially be obtained using part-aware
mesh segmentation techniques from the computer graphics literature (Shalom et al.,
2008).

We follow the classical "active shape model” formulation of point-based shape analy-
sis (Cootes et al., 1995), and perform PCA on the resulting (centered and rescaled) vec-
tors of 3D coordinates. The final geometry representation is then based on the mean
wireframe µ plus the m principal component directions pj and corresponding standard
deviations σj, where 1 ≤ j ≤ m. Any 3D wireframe X can thus be represented, up to
some residual ε, as a linear combination of r principal components with geometry param-
eters s, where sk is the weight of the kth principal component:

X(s) = µ+
r∑

k=1

skσkpk + ε (3.1)

Example 3D wireframe models for cars and bicycles are shown in Figure 3.3. Please note
how principal directions represent the diversification of cars into sedan, SUV, sports car,
and compact car, and of bicycles into mountain bike, racing bike, and children’s bike. In
our experiments, we show that we can in fact recover these fine-grained vehicle cate-
gories by fitting the model to single input images (Section 3.5.6).

3.4.2 Local shape representation

In order to match the 3D geometry representation to real-world images, we train a distinct
part shape detector for each vertex in the wireframe, for a variety of different viewpoints.
This is in contrast to early approaches relying on the matching of discrete image edges to
model segments (Koller et al., 1993; Sullivan et al., 1995; Haag and Nagel, 1999), which
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Figure 3.3: Coarse 3D wireframe representations of cars (left) and bicycles (right). Modes
of variation along the first three principal component directions.

has proven to be of limited robustness in the face of real-world image noise and clutter.

Following Stark et al. (2010); Zia et al. (2011), we employ sliding-window detectors,
searching over image locations and scales, using a dense variant of shape context (An-
driluka et al., 2009) as features. For each wireframe vertex, a detector is trained from
vertex-centered patches of non-photorealistic renderings of our 3D CAD models (Fig-
ure 3.4). Despite the apparent difference from real-world appearance, this particular com-
bination of edge-based rendering and shape feature has shown to generalize well from
rendered to real-world images (Stark et al., 2010; Pepik et al., 2012b). Rendering positive
training examples further has the advantage of being able to generate massive amounts
of artificial training data from arbitrary viewpoints. Following Stark et al. (2010); Zia et al.
(2011); Pepik et al. (2012b), we render three different types of edges: crease edges,
which are inherent properties of a 3D mesh, and thus invariant to the viewpoint, part
boundaries, which mark the transition between semantically defined object parts and of-
ten coincide with creases, and silhouette edges, which describe the viewpoint-dependent
visible outline. Negative training data is obtained by sampling random patches from a set
of real-world background images set, as well as random patches from rendered images
in the vicinity, but not on the parts of interest. The latter is important in order not to bias
the part detectors to label all photorealistic patches as background, and also improves
localization accuracy of the detectors.

3.4.3 Discriminative part detection

As local part detectors, we use discriminative classifiers trained for a discrete set of
viewpoints, specified by azimuth and elevation angles. We explore two different variants,
namely individual binary AdaBoost (Freund and Schapire, 1997) classifiers per part
and viewpoint, and a monolithic multi-class random forest (Breiman, 2001) per object
class. As we show in our experiments (Section 3.5.3), random forests prove favorable
w.r.t. runtime while maintaining the same part localization performance, which is why all
following results in Section 3.5 are based on random forests.

AdaBoost. In this variant, we train for each part and each viewpoint an individual binary
AdaBoost classifier, which discriminates that particular part in that particular view from
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Figure 3.4: Non-photorealistic renderings for local part shape detector training, cars (top),
bicycles (bottom). Green boxes denote positive training examples.

(a) (b)

Figure 3.5: Random forest detection map for one car part. (a) Test image and ground truth
part, (b) detection map. Brighter shade corresponds to higher likelihood.

the background. Such a strategy has been employed successfully for people detection
in Andriluka et al. (2009), and in our previous work (Zia et al., 2011).

Random forest. In an attempt to reduce the massive amount of detectors arising from
the cross product of parts and viewpoints, we make two modifications to the above
scheme. First, we replace the binary classifiers by a single multi-class classifier with one
class per part (plus one for the background). We choose random forests (Breiman, 2001),
since they have been shown to deliver excellent performance for multiclass problems with
complex class-conditional distributions. Second, we leverage the ability of random forests
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to model multi-modal distributions, and combine all training examples into a single class
that depict the same part at any viewpoint. That is, we train a single viewpoint-invariant
random forest, which distinguishes between parts, irrespective of the viewpoint.

In the individual nodes of the decision trees, we use oblique splits that decide based on
random hyper-planes of a larger number of randomly chosen dimensions (Menze et al.,
2011), as opposed to the more commonly used axis-aligned (or orthogonal) splits, where
node decisions are based on a single feature dimension. Oblique splits increase the dis-
criminative power in connection with high-dimensional features, such as our dense shape
context features. Furthermore we use the ratio between the part-conditional distribution
and the background as final part detection score, as in Fergus et al. (2003); Villamizar
et al. (2011). Figure 3.5(b) gives a random forest detection map for the car part of Fig-
ure 3.5(a).
Our quantitative evaluation indicates that the detection maps from random forests, al-
though more diffuse due to the marginalization over viewpoints, provide a better tradeoff
between discrimination and recall when used in combination with the global geometry
model (Section 3.5.3).

3.4.4 Viewpoint-invariant shape & pose estimation
During recognition, we seek to find an instance of our 3D geometric model that best
explains the observed image evidence. This is formulated as an objective function defined
over possible configurations of the model as well as its projection to the test image. It
is worth noting that this entails a search over continuous 3D geometry and viewpoint
parameters rather than switching or interpolating between flat viewpoint-dependent
representations as in previous work (Thomas et al., 2006; Su et al., 2009; Stark et al.,
2010; Pepik et al., 2012b).

More formally, we denote a recognition hypothesis as h = (s, f,θ,q). It comprises object
geometry parameters s (see Section 3.4.1), camera focal length f , spherical viewpoint
parameters for azimuth and elevation θ = (θaz, θel), and image space translation and
scale parameters q = (qx, qy, qs). For perspective projection we assume a simplified pro-
jection matrix P that depends only on f , θ, and q. It is composed of a camera calibration
matrix K(f) and a rotation matrix R(θ), and projects wireframe vertices Xj(s) to image
coordinates xj:

P(f,θ,q) = K(f)
[
R(θ) −R(θ)q

]
xj = PXj(s) .

(3.2)

For recognition, we want to find the maximum a-posteriori estimate

ĥ = arg maxh [L(h) + λQ(h)] , (3.3)

where L(h) is the data likelihood term and Q(h) is a shape prior (regularizer).

Data likelihood and shape prior. The inference in our framework (see below) is based
on sampling part configurations from the explicit 3D model (3.1) and scoring them. In
such a model-driven approach only globally plausible shapes are ever generated, which
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allows for a relatively simple data likelihood (compared to approaches where the part
locations can move independently in a data-driven manner (Stark et al., 2010)).

We define the (log-)likelihood of an object instance being present as a sum over the like-
lihoods of its constituent parts, assuming conditional independence between them. The
likelihood Sj(ς,xj) of part j being present at any given image location xj and local scale
ς has already been estimated by the part detector (Section 3.4.3). Following Villamizar
et al. (2011) we normalize the part likelihood by the background likelihood Sb(ς,xj) at the
same location. In order to account for object-level self-occlusion, only parts that are visi-
ble in the putative projection are considered, leading to binary indicator functions oj(s,θ)
for the visibility. Finally the likelihood is re-normalized to the number of visible parts. The
complete data term then reads

L(h) =

max
ς

[
1∑m

j=1 oj(s,θ)

m∑
j=1

oj(s,θ) log
Sj
(
ς,PXj(s)

)
Sb
(
ς,PXj(s)

)] (3.4)

The PCA model (3.1) implies a zero-mean multivariate Gaussian distribution of the shape
parameters around the mean shape. Consequently we introduce a shape prior which
penalizes deviations from the mean 3D shape of the object class according to

Q(h) =
r∑

k=1

log N (sk; 0, 1). (3.5)

To avoid overly unlikely shape hypotheses from the extreme tails of the Gaussian we limit
the shape parameters to the range |sk| < 3, such that they cover 99.7% of the shape
variation observed in the training set.

Inference. The objective (3.3) cannot be easily maximized, since the data term is highly
non-convex and—due to the binary oj(s,θ)—also not smooth. We thus resort to a
stochastic hill-climbing method. To account for the multi-modality of the posterior we
generate multiple starting points (“particles”) {hnm} with corresponding objective values
L(hnm) + λQ(hnm), and iteratively improve them through stochastic search. Each particle
hnm corresponds to a distinct set of values in the space of object hypotheses {s,θ,q}, with
m being the particle index and n the iteration.1 The initial set of particles is drawn from
a uniform distribution for the unknown shape parameters, whereas the parameters for
location and pose are based on the initialization. In every iteration the particles are then
updated to increase their objective value (3.3). Instead of computing gradients, semi-local
update steps are determined by random sampling, which copes better with weak local
minima and avoids problems due to visibility changes: for each particle a number of can-
didates {h̃n+1

m } are generated by drawing new values for the individual parameters hm
from Gaussians centred at the current values,

h̃n+1
m ∼ p(h̃n+1

m |hnm) = N
(
hnm, σ

2
h(n)

)
. (3.6)

Among the candidates the one with the highest likelihood replaces the original particle,
1f is held fixed in our experiments, assuming that the perspective effects are similar for all images.
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thus yielding a new particle set {hn+1
m }. The variances σ2

h(n) of the proposal distributions
are successively reduced according to an annealing schedule, for faster convergence.
After the last iteration the particle with the highest weight is kept as MAP-solution ĥ.
Although the underlying posterior distribution may be very complicated, hill-climbing
with simple Gaussian perturbations works well in practice. This procedure is similar
to Leordeanu and Hebert (2008) (per particle), except that instead of computing the
variances as a function of drawn samples, we choose them according to a pre-defined
schedule. While this means that each of our particles might get stuck at local optima,
keeping of multiple particles allows choosing the best one among them as well as
keeping extra locally optimal hypotheses for a future scene-level reasoning stage.

Initialization. Rather than running inference blindly over entire test images, we start from
promising image positions, scales, and viewpoints, which we obtain in the form of pre-
dicted object bounding boxes from a conventional 2D multi-view detector. In particular,
we use the recently proposed multi-view extension of the deformable part model by Pepik
et al. (2012b), which has been shown to yield excellent performance w.r.t. both 2D bound-
ing box localization and coarse viewpoint classification. Specifically, we initialize qx and
qy inside of a predicted object bounding box, and qs according to the bounding box size.
Similarly, we initialize the viewpoint parameters θ according to the coarse viewpoint pre-
dicted by the detector. Due to the highly non-convex nature of the problem the overall
system performance is strongly influenced by the initialization quality (Section 3.5.2).

3.5 Experimental evaluation

In the following, we carefully analyze the performance of our 3D object class model in
a series of experiments, focusing on its ability to provide detailed 3D object geometry.
To that end, we evaluate its performance in four different tasks, comparing to results
reported by prior work where appropriate.

(i) first we evaluate the ability to accurately predict the locations of individual object parts
in the 2D image plane (Section 3.5.3). In the context of 3D scene understanding, this
ability is important in order to establish geometric relations between different scene enti-
ties, such as an object touching the ground plane at a specific location. (ii) we evaluate
the ability to recover the full 3D pose of recognized objects (Section 3.5.4). In contrast
to most prior work, we report results for both coarse viewpoint classification and continu-
ous 3D pose estimation with 5 degrees of freedom (pictures are assumed to be upright,
without in-plane rotation). In either case, we achieve results on par with or better than
previous work. (iii) we evaluate our object class representation in the context of a 3D
scene modeling task, namely to recover relative camera pose from wide-baseline pairs
of images depicting the same object (Section 3.5.5). Here, the model is challenged to
recover consistent 3D object geometries across different viewpoints, and improves over
previously reported results for all baselines, up to 180◦. (iv) we leverage the detailed 3D
shape hypotheses provided by our approach for fine-grained object categorization based
on geometric shape (Section 3.5.6).
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3.5.1 Setup
We commence by describing the experimental setup w.r.t. test and training data, random
forest training, inference, and initialization.

Test datasets. The evaluation is based on the 3D Object Classes (Savarese and Fei-Fei,
2007) and EPFL Multi-view cars (Ozuysal et al., 2009) datasets, which both have been
designed specifically for multi-view recognition. These datasets constitute a suitable
trade-off between controlled conditions for experimentation and challenging real-world
imagery. Our focus is on the object classes car and bicycle. The 3D Object Classes test
set depicts 5 object instances from 8 different azimuth angles, 3 distances, and 2 (cars)
or 3 (bicycles) elevation angles, against varying backgrounds, amounting to a total of
240 cars and 360 bicycle test images. The EPFL Multi-view cars test set comprises 10
different car models with largely varying shape, rotating on a platform, with a sample
every 3 to 4 degrees, totaling to about 1000 images. Figure 3.10 and 3.11 show qualitative
results obtained by our method on images of these data sets.

Synthetic training data. In all experiments, we use 38 commercially available 3D CAD
models of cars2 and 32 freely available CAD models of bicycles3 for training. We annotate
36 model points for cars and 21 for bicycles (Figure 3.4) in order to train both global
geometry (Section 3.4.1) and local part shape (Section 3.4.2). Each part is rendered
from 72 different azimuth (5◦ steps) and 2 elevation angles (7.5◦ and 15◦ above the
ground) for cars, respectively 3 elevation angles (7.5◦, 15◦, and 30◦) for bicycles, densely
covering the relevant part of the viewing sphere (the bicycle test set covers a larger range
of viewpoints). CAD models are rendered using the non-photorealistic style of (Stark
et al., 2010; Pepik et al., 2012b). Rendered part patches serve as positive examples,
randomly sampled image patches as well as non-part samples from the renderings serve
as negative examples. The total number of training patches is 140,000 per class, evenly
split into positive and negative ones.

Random forest training. As part detectors, we train a single random forest clas-
sifier (Breiman, 2001) for each object class (one for bicycles and one for cars),
distinguishing between the parts of interest (36 for cars, 21 for bicycles) and background.
In both cases the random forests have 30 trees with a maximum depth of 13. Node tests
are given by random hyperplanes of dimensionality 59 (chosen from a total of 3, 500
dimensions of the shape context descriptor), which for our high-dimensional input we
found empirically to deliver much higher performance than the more commonly used
single dimension node tests.

Inference. We sample θaz over a continuous range of 20◦ centered around the initializa-
tion and θel from ground level to 20◦ for cars and 30◦ for bicycles. For part detections,
we consider the maximum score in a scale range of±30% around the bounding box scale.

Initialization. We report results for two different, informed initializations of our model, as
well as results obtained by running our model from random starting points, not using any

2www.doschdesign.com
3www.sketchup.google.com/3dwarehouse/
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Figure 3.6: Example detections without (top row) and with informed initialization Pepik
et al. (2012b) (bottom row).

prior information about object location and pose (Section 3.5.2).

The first initialization is provided by the state-of-the-art multi-view detector (Pepik et al.,
2012b), providing almost perfect 2D bounding box localization on the 3D Object Classes
dataset for cars and bicycles (97.5% average precision each). Specifically, we use
the multi-view DPM referred to as DPM-VOC-VP in Pepik et al. (2012b), trained from
the respective car and bicycle training sets provided by the 3D Object Classes and
EPFL Multi-view cars data sets (Ozuysal et al., 2009). In the following, we refer to the
combination of this initialization and our model as the full system, since it constitutes
a fully automatic procedure that infers detailed 3D geometric hypotheses from input
images, as it would be used in a real-world application.

The second initialization (termed GT) aims at providing a best case evaluation of our
model isolated from the effects of the multi-view DPM, starting from annotated ground
truth bounding boxes and coarse viewpoint estimates.
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Figure 3.7: Part localization results on 3D Object Classes. Part numbering schemes (left),
localization performance for individual parts (center) and viewpoints (right), for (a) bicy-
cles, and (b) cars.

3.5.2 Recognition without initialization
We commence by exploring the performance of our approach in isolation, independent
from any informed initialization, by running it from a number of randomly selected starting
points (250 particles drawn uniformly at random from the location, pose, and shape
parameter space). We evaluate over the car class in the 3D Object Classes dataset.
Considering the highest scoring hypothesis in each of the 240 test images, we are able
to localize the correct 2D bounding box in 51.7% of the cases (according to Pascal
criterion (Everingham et al., 2010)). Further, following the experimental protocol of Su
et al. (2009), the viewpoint of these true positive detections is correctly classified into 8
different azimuth angle classes (left, front-left, front, front-right, right, back-right, back,
back-left) in 66.9% of the cases.

Although these numbers are encouraging, running our detailed 3D geometric model
blindly over entire test images is obviously inferior to current state-of-the-art object
class detectors, both w.r.t. 2D localization performance and computational complexity.
In the following, we thus provide our model with informed initializations in the form
of rough 2D object locations and poses (full system), obtained by a 2D multi-view
detector (Pepik et al., 2012b). This cascaded approach drastically reduces compu-
tation, and results in state-of-the-art performance in pose estimation (Section 3.5.4).
Figure 3.6 compares example detections obtained with and without informed initialization.

Please note that other recent work (Li et al., 2011) on deformable object models also
relies on initializing models within a small operating window centered around the object
(much like our GT initialization), and even assumes fixed object scale.

3.5.3 Part localization
One way of performing accurate geometric reasoning on the scene-level is to have
object class models that provide well-defined anchor points, so as to geometrically relate
them to other scene entities. Consider for example the wheels of a vehicle, which can
be assumed to rest on a supporting surface, and can hence provide hints on the likely
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position and orientation of a ground plane. Likewise, localizing extremal points on the
vehicle body (such as bumper corners) can help to assess the area of covered ground
and hence its 3D extent in the scene.

Since the parts in our model are chosen to correspond to well-defined regions of an
object’s anatomy (Section 3.4.1), we can evaluate the ability of our model to localize
these parts individually. To that end, we annotate the 2D locations of all visible parts in
our test images. We have made all annotations publicly available4.

Protocol. We measure part localization accuracy as the fraction of correctly localized
parts of a specific type across test images, restricted to those test images where the
method under consideration delivers a true positive detection in terms of the Pascal
criterion (Everingham et al., 2010) on the 2D bounding box. A part is considered correctly
localized if its estimated 2D position deviates less than a fixed number of pixels from
annotated ground truth, relative to its estimated scale. For instance, for a car side view at
scale 1.0, covering 460× 155 pixels, that number is 20, which amounts to localizing a part
to within ≈ 4% of the car length. The same criteria is used for bicycles. Note that this
strict criterion is applied in all cases, even for hypotheses with grossly wrong viewpoint
estimates.

Results. Figure 3.7 gives the results for part localization for cars (a) and bicycles
(b), averaged over all test images, grouped by individual parts (center bar plots) and
viewpoints (right bar plots). We distinguish among the performance of the full system
(blue bars), our system initialized from ground truth (GT,red bars), and a baseline also
initialized from GT, but using uniform part score maps (chance, green bars).

Per-part evaluation. In Figure 3.7 (a) and (b) (center), we observe that there are in
fact differences in the localization accuracy of different parts. Notably for cars (Fig-
ure 3.7(a)(center)), parts located in the wheel regions (9-18, 27-36) are localized almost
perfectly by both the full system and when starting from GT. This is not surprising, since
wheels provide plenty of local structure that can robustly matched by local part detectors,
providing strong guidance for the geometric model. Parts on the front roof (4, 22) can
also be localized with great accuracy (89.4% and 87.2% by the full system), followed by
back roof parts (5 with 74.9% and 23 with 76.0%) and hood parts (3 with 72.1% and
21 with 74.9%). Parts in the trunk region tend to perform worse (7 with 53.0% and 25
with 61.7%). We attribute this difference to the greater flexibility that our learned global
geometry model allows in the back: the collection of training CAD models comprises
limousines and sports cars as well as SUVs and station wagons.

Bicycles (Figure 3.7(b)(center)) appear to be more challenging than cars in general
(GT performance drops by 9.5% from 87.6% to 78.1%), possibly due to their wire-like
nature, which amplifies the influence of background clutter. Concerning the ranking of
the parts, we observe a similar trend as for cars: parts located on the wheels (7-8,12-21)
have localization accuracy of at least 82.8% for the full system, whereas the wheel
centers (8,14) even reach 92.4% and 94.8%, respectively. Again, parts that exhibit more

4http://www.igp.ethz.ch/photogrammetry/downloads



3.5 Experimental evaluation 59

Classifier classifiers class. tested 1 3 post
type trained per detection mode modes inference

AdaBoost (Zia et al., 2011) 5,184 36 56.3% 75.5% 79.9%
AdaBoost (Zia et al., 2011) 5,184 432 61.4% 79.0% 81.1%

Random forest 36 36 35.0% 57.8% 81.5%

Table 3.1: Comparison of part detector performance using random forests and Ad-
aBoost (Zia et al., 2011) (on cars).

variability in the training CAD models perform worse, such as the handle region (1-3,
between 49.7% and 67.8%) and the joint below the seat (9 with 59.5%).

On average, we achieve correct part localization in an encouraging 81.5% of all cases
for cars using the full system (87.6% using GT), and in 78.1% for bicycles (for both full
system and GT).

Per-viewpoint evaluation. Figure 3.7 (a) and (b) (right) groups the part localization
results according to the different azimuth angles of test images, averaged over all parts.
For cars (Figure 3.7(a)(right)), we observe that part localization performs best for plain
side views (left 91.5%, right 86.5%, full system), followed by diagonal front (front-left
86.7%, front-right 84.7%) and back views (back-right 81.7%, back-left 75.2%). Plain front
(72.5%) and back (63.5%) views perform moderately, apparently due to the absence of
the strong evidence provided by the wheels in the other views.

The same tendency can be observed for bicycles (Figure 3.7(b)(right)). Plain side views
perform best (left 90.2%, right 87.8%, full system), followed by the diagonal views
(back-right 83.0%, front-right 80.1%, back-left 77.1%, front-left 74.8%) and the plain back
and front views (42.9% and 41.4%).

Comparison to AdaBoost (Zia et al., 2011). Table 3.1 compares the part localization
performance of the full system using random forest classifiers as part detectors with two
variations of AdaBoost, as we previously proposed in Zia et al. (2011). The first variant
trains a single binary AdaBoost classifier for each part (36 for cars), azimuth (72), and
elevation angle (2), resulting in 5, 184 trained classifiers. At test time, only those classi-
fiers belonging to the coarse viewpoint predicted by the initialization are considered (36
in total). The second variant uses the same set of trained classifiers, but considers neigh-
boring viewpoints at test time as well (432 in total) to account for viewpoint uncertainty.
Table 3.1 gives results for post-inference part localization (i.e. , applying the full system
end to end) as well as pre-inference localization, considering 1 and 3 highest modes in
the part detection maps as hypotheses, respectively. When using 3 highest modes we
consider a part detection as correct if any one of the modes falls on the ground truth part
location. Not surprisingly, we observe that both AdaBoost versions perform much better
in pre-inference localization than random forests (up to 26.4% for 1 and 21.2% for 3
modes), since the restriction to a narrow range of viewpoints increases the discriminative
power of the resulting classifiers. While the inclusion of neighboring viewpoints aids
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3D Object Classes cars bicycles
Liebelt et al. [34] 70.0% 75.5%
Stark et al. [51] 81.0% -
Zia et al. [66] 84.0% -

Glasner et al. [19] 85.3% -
Payet et al. [43] 86.1% 80.8%
Initialization [45] 97.5% 97.5%

Full system 97.1% 97.1%
GT 98.7% 99.4%
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Figure 3.8: Coarse viewpoint classification on 3D Object Classes. (a) Accuracies, (b)
confusion matrices for cars (top), bikes (bottom), using our full system.

robustness, including all viewpoints (as we do for random forests) degrades performance.
Post-inference, however, random forests have a slight edge (81.5% vs. 79.9% and
81.1%), achieved with two orders of magnitude fewer classifiers (36 vs. 5, 184). This
seemingly counter-intuitive behavior stems from the fact that in difficult cases the binary
AdaBoost classifiers are sometimes "too convinced" that a part is not present, and these
false negatives (low part likelihoods at the correct position) drive the inference away from
the correct shape.

Summary. We conclude that our model yields accurate estimates of the 2D locations of
individual parts in the majority of cases, providing a solid basis for 3D geometric reason-
ing. Since we also observe a non-negligible difference between the results obtained by
different initializations (full system vs. GT), we expect further improvements in response
to improved initial detections to start from.

3.5.4 Pose estimation

In this section, we evaluate the ability of our model to accurately estimate the 3D pose
of recognized objects. Even without considering individual parts (as in Section 3.5.3),
pose estimation facilitates monocular 3D perception and can provide valuable geometric
information for scene-level reasoning. As an example, consider the effect of observing
an object, say, a bicycle from different azimuth angles: knowledge about its 3D shape
enables the viewer to estimate the perspective distortion not only of the object itself, but
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EPFL Multi-view cars
Ozuysal et al. (2009) 41.6%

Xiang and Savarese (2012) 64.8%
Lopez-Sastre et al. (2011) 66.0%

Initialization (Pepik et al., 2012b) 76.5%
Full system 76.5%

Table 3.2: Coarse viewpoint classification on EPFL Multi-view cars, using our full system.

of the entire scene, and thus reason about distances and relations in 3D Euclidean space.
While the focus of our approach lies on providing detailed, continuous 3D pose estimates
with 5 degrees of freedom (or even 6, if initialized with an object detector that is invariant
to in-plane rotation), we start by reporting results for the popular task of viewpoint
classification with 8 and 16 equally spaced viewpoint bins on 3D Object Classes and
EPFL Multi-view cars, respectively. In that setting, pose estimation is discretized into
a multi-class labeling problem. Since our method relies on coarse viewpoint estimates
provided by Pepik et al. (2012b) as an initialization, this evaluation also serves as a
sanity check, to ensure that the added expressiveness of our model does not significantly
degrade viewpoint classification performance.

Coarse viewpoint classification. Following the experimental protocol of Su et al.
(2009), we report results on 3D Object Classes dataset for the classification of true
positive object detections according to 8 different azimuth angle classes (left, front-left,
front, front-right, right, back-right, back, back-left). Figure 3.8(a) gives the corresponding
results for cars and bicycles, comparing our full system to our system initialized from
GT bounding boxes, the estimate provided by the initialization (Pepik et al., 2012b), and
results reported in prior work.

In Figure 3.8(a), we observe that, for both cars and bicycles, the initialization (Pepik et al.,
2012b) alone already provides almost perfect viewpoint classification (97.5% and 97.5%,
respectively), outperforming the next best prior results (Payet and Todorovic, 2011) by
margins of 11% and 17%, respectively. While our full system maintains that high level
of performance for both classes (97.1% and 97.1%; compared to Pepik et al. (2012b)
we mis-classify the viewpoint of a single car/bicycle), our model initialized from GT can
further improve to 98.7% for cars and 99.4% for bicycles.

For the EPFL Multi-view cars dataset, we perform viewpoint classification into 16
azimuth angle classes as in Ozuysal et al. (2009). The test set contains 10 different
car models imaged under fairly poor lighting conditions, thus the performance of most
state-of-the-art methods is worse than the results over 3D Object Classes, as indicated in
Table 3.2. Again, the initialization (Pepik et al., 2012b) already obtains the best viewpoint
classification accuracy reported to date. The full system again maintains the high level of
classification accuracy (76.5 % for both initialization and full system), though it loses the
detections on 9 test images out of 994.



62 CHAPTER 3. DETAILED 3D REPRESENTATIONS FOR OBJECT MODELING AND RECOGNITION

3D Object Classes Total True % Correct Avg. Error Avg. Error
cars Images Positives Azimuth Azimuth Elevation
Stark et al. (2010) 48 46 67.4% 4.2◦ 4.0◦

Zia et al. (2011) 48 45 73.3% 3.8◦ 3.6◦

Initialization (Pepik et al., 2012b) 48 48 70.8% 3.4◦ -
Full system 48 47 95.7% 3.8◦ 3.7◦

Without init. 48 21 61.9% 3.9◦ 4.8◦

GT 48 47 93.6% 3.6◦ 3.2◦

(a)
3D Object Classes Total True % Correct Avg. Error Avg. Error
bicycles Images Positives Azimuth Azimuth Elevation
Initialization (Pepik et al., 2012b) 72 69 76.8% 2.3◦ -
Full system 72 67 89.6% 3.4◦ 10.4◦

GT 72 69 98.6% 3.2◦ 8.7◦

(b)

Table 3.3: Continuous viewpoint estimation: (a) cars, (b) bicycles.

EPFL Multi-view Total True % Correct Avg. Error
cars Images Positives Azimuth Azimuth
Initialization (Pepik et al., 2012b) 994 981 73.3% 3.4◦

Full system 994 972 80.3% 3.3◦

Table 3.4: Continuous viewpoint estimation (EPFL cars).

Continuous viewpoint estimation. Since the ground truth of the 3D Object Classes
dataset does not provide accurate viewpoints beyond the eight rough directions, we
annotate all images depicting one particular car (48 images) and one particular bicycle
(72 images) with continuous azimuth and elevation angles, by manually fitting 3D CAD
models to the images. In particular, we start from a CAD model of maximally similar
shape, placed on a ground plane, and iteratively adjust the 3D position of the car, the
position and orientation of the camera, and its focal length. This procedure is quite
time-consuming, but results in precise geometric fits for all images.

Table 3.3(a) and (b) give the results for continuous viewpoint estimation, comparing the full
system, GT, and the initialization (Pepik et al., 2012b), again considering only final true
positive detections. For cars (Table 3.3(a)), we also include previously reported results
of Stark et al. (2010); Zia et al. (2011). A viewpoint estimate is considered correct if it
lies within 10◦ of the annotated ground truth azimuth angle (in contrast to the 45◦ bins of
coarse viewpoint classification). Among those correct estimates, we further measure and
report the average angular error in both azimuth and elevation.
In Table 3.3(a), we observe that our full system improves by a remarkable 22.4% over
our previous result of 73.3% (Zia et al., 2011) for cars, amounting to 95.7% viewpoint
estimates that are within 10◦ of the ground truth. At the same time, we improve 24.9%
over the initialization (Pepik et al., 2012b), confirming the ability of our method to provide
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Azimuth Image SIFT Parts Zia DPM-3D-Const. Full GT
Diff. Pairs Lowe (2004) only Zia et al. (2011) Pepik et al. (2012b) system
45◦ 53 2.0% 30.2% 54.7% 54.7% 86.8% 86.8%
90◦ 35 0.0% 22.8% 60.0% 51.4% 88.6% 94.3%

135◦ 29 0.0% 20.7% 51.7% 51.7% 65.5% 89.7%
180◦ 17 0.0% 0.0% 41.2% 70.6% 76.5% 76.5%
Avg. 134 0.5% 18.4% 51.9% 57.1% 79.4% 86.8%

Table 3.5: Ultra-wide baseline matching results (cars).

viewpoint estimates of much finer detail than captured by coarse viewpoint classification.
For bicycles (Table 3.3(b)), the improvement over the initialization (Pepik et al., 2012b) is
less pronounced, but still significant (by 12.8% from 76.8% to 89.6%).

Among the correct viewpoint estimates, the actual viewpoint errors for cars are all in
the same range. Our full system achieves angular errors of 3.8◦ in azimuth and 3.7◦ in
elevation, which is practically the same as our model starting from GT (3.6◦ and 3.2◦).
Similar or slightly larger errors are also obtained with competing methods, which however
have significantly lower recall, meaning that the “more difficult” cases solved only by our
model are nevertheless accurately estimated. Similarly, we achieve 3.4◦ in azimuth and
10.4◦ in elevation for bicycles. We attribute the significantly larger elevation errors to the
fact that bicycles are largely planar, and thus their elevation angle is rather correlated
with the shape (in particular the height-to-length ratio).

Table 3.4 gives the corresponding results for EPFL Multi-view cars. Here, cars are de-
picted from a wide variety of viewpoints sampled densely from the entire 360◦ viewing
circle. In unison with the results on 3D Object Classes, we improve over the initializa-
tion (Pepik et al., 2012b) by 7%, obtaining precise azimuth angle estimation in 80.3 % of
the cases, whereas the average error in azimuth estimation decreases to 3.3◦.

3.5.5 Ultra-wide baseline matching
While the experiments of Section 3.5.3 (part localization) and 3.5.4 (pose estimation)
evaluate our approach from an object-centric perspective, the following experiment
quantifies its ability to recover 3D camera and scene geometry. In particular, we consider
the task of estimating relative camera pose from a pair of images depicting the same
scene, i.e. epipolar geometry fitting. This task quickly gets very challenging as the
baseline increases; the best invariant interest point descriptors like SIFT (Lowe, 2004)
allow matching up to baselines of ≈30 degrees in orientation and a factor of ≈2 in scale.
Only recently, Bao and Savarese (2011) have noted that semantic knowledge (“the scene
contains a car somewhere”) can provide additional constraints for solving the matching
problem, increasing the range of feasible baselines. Their approach enforces consistency
between 2D object detection bounding boxes and coarse pose estimates across views in
a structure-from-motion framework.

In contrast, we leverage the ability of our approach to predict accurate object part posi-
tions, and use those directly as putative matches. The 3D model is fitted independently
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to two input images, and the model vertices form the set of correspondences. Matching
is thus no longer based on the local appearance around an isolated point, but on the
overall fit of the object model. Note, this makes it possible to match even points which
are fully occluded. In principle, relative camera pose could be obtained directly from the
two object pose estimates. In practice this is not robust, since independent fitting will
usually not find the exact same shape, and even in a generally correct fit some parts may
be poorly localized, especially if the guessed focal length is inaccurate. Hence, we use
corresponding model vertices as putative matches, and robustly fit fundamental matrices
with standard RANSAC.

Protocol. As test data we have extracted 134 pairs of images from the car data set, for
which the car was not moved w.r.t. the background. The restriction to stable background
ensures the comparison is not unfairly biased against SIFT: straight-forward descriptor
matching does not need model knowledge and can therefore also use matches on the
background, whereas interest points on the cars themselves are rather hard to match
because of specularities.

To assess the correctness of the fundamental matrices thus obtained, we manually
label ground truth correspondences in all 134 images pairs, on the car as well as the
background. A fit is deemed correct if the Sampson error (Hartley and Zisserman, 2004)
for these points is <20 pixels.

Results. In Table 3.5, we compare, for varying angular baselines (45◦, 90◦, 135◦, 180◦),
the results obtained by our full system and GT to previously reported results (our previous
method Zia et al. (2011) and the multi-view deformable part model with 3D constraints,
DPM-3D-Const. (Pepik et al., 2012b)), and two baseline methods: (i) we find putative
matches with SIFT (using the default options in Vedaldi and Fulkerson (2008)); and (ii)
in order to assess whether the geometric model brings any benefit over the raw part
detections it is based on, we perform non-maximum suppression on the scoremaps
and obtain three modes per part in each of the two images. The permutations of these
locations form the set of putative correspondences.

As expected, SIFT catastrophically fails (0.5% correctly estimated relative poses on av-
erage). Matching raw part detections works slightly better (18.4%), since the dedicated
detectors search for a pre-trained part irrespective of the viewpoint, rather than com-
paring low-level appearance patterns. The DPM-3D-Const. (Pepik et al., 2012b) already
outperforms our previous result of 51.9% (Zia et al., 2011), but is in turn superseded by
a significant margin of 22.3% by our full system (79.4%). Note that even for 180◦ view-
point spacing, 76.5% of the estimated epipolar geometries are correct, see examples in
Figure 3.11(g).

3.5.6 Fine-grained categorization by 3D geometry
In addition to the popular task of distinguishing between basic-level categories (such as
cat and dog), fine-grained categorization into sub-ordinate categories (such as sheep dog
and Labrador) has received increasing attention in the vision literature lately (Nilsback
and Zisserman, 2008; Yao et al., 2011; Farrell et al., 2011). It is deemed challenging due
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(a)

Car cat. 1 2 3 4 5 Total
Full System 65.9% 81.3% 60.4% 70.8% 60.4% 67.8%

GT 55.3% 70.8% 64.6% 75.0% 56.2% 64.4%
Chance 38.9% 30.5% 30.5% 38.9% 38.9% 35.5%

(b)

Bicycle cat. 1 2 3 4 5 Total
Full System 57.3% 62.5% 71.2% 75.0% 65.1% 66.1%

GT 55.1% 60.9% 68.6% 71.0% 68.6% 64.8%
Chance 25.0% 28.1% 40.6% 25.0% 25.0% 28.7%

Table 3.6: Fine-grained categorization of (a) cars , (b) bicycles.

(a)

(b)

Figure 3.9: Fine-grained categorization examples for (a) cars, (b) bicycles. Example input
image of true class with corresponding CAD model prototype (left), five most frequently
matched CAD model hypotheses (right; green denotes correct, red incorrect matches).

to the need to capture subtle appearance differences between classes (e.g. , fur texture)
while at the same time maintaining robustness to intra-class variations induced by
viewpoint changes and lighting conditions. As a consequence, the focus has mostly been
on classes and categorization methods that favor discrimination by strong local cues
(such as random image patches (Yao et al., 2011; Farrell et al., 2011)) or global image
statistics (such as color and gradient histograms for flowers (Nilsback and Zisserman,
2008)).

In the following experiment, we choose a different route, and base the fine-grained
categorization entirely on 3D geometry. In particular, we consider the natural distinction
between fine-grained sub-ordinate categories of cars and bicycles, such as sedans,
sports cars, SUVs, etc. as well as mountain bikes, street bikes, etc.

We perform fine-grained categorization following a nearest neighbor scheme. Starting
from a 3D wireframe estimate obtained by our model for a test image, we retrieve the
closest wireframe exemplar from the database of CAD models of the basic-level object
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class of interest (car or bicycle), using Euclidean distance between translation- and
scale-invariant wireframe representations. Examples of nearest neighbor matches are
visualized in Figure 3.11(a) - (f), which show edge renderings of retrieved CAD models,
projected into the respective test image at the estimated location, scale, and viewpoint.
Please note the remarkable accuracy of the fully automatic 3D geometry estimates.

Protocol. We suggest the following procedure to quantify the performance of fine-grained
categorization based on the 3D Object Classes data set: For each of the 5 car and 5
bicycle instances in the test set, we manually determine the single best matching CAD
model in terms of 3D geometry, using the methodology described in Section 3.5.4. We
then consider each of these CAD models a prototype of a fine-grained category, and
measure how often the retrieved CAD models are sufficiently similar to these prototypes,
by thresholding the mean Euclidean distance between corresponding vertices of the 3D
fit and the annotated CAD model.

Results. Table 3.6 gives fine-grained categorization results for cars (a) and bicycles (b),
comparing our full system, GT, and a chance baseline returning random CAD models
from the database. The first five columns give the fraction of retrieved CAD models
deemed sufficiently similar to the respective fine-grained category prototype. The last
columns give the corresponding total fractions: for both cars (Table 3.6(a)) and bicy-
cles (Table 3.6(b)), our full system successfully recovers the fine-grained category in two
thirds of the cases (67.8% for cars, 66.1% for bicycles). Figure 3.9 shows correspond-
ing examples. The examples show how sedans are most frequently matched to sedans
(Figure 3.9(a)), racing bikes to racing bikes (Figure 3.9(b), top), and mountain bikes to
mountain bikes (Figure 3.9(b), bottom).

3.6 Conclusions

We have designed a detailed 3D geometric object class model for 3D object recognition
and modeling, complementing ideas from the early days of computer vision with modern
techniques for robust model-to-image matching. Combining 3D wireframes with discrimi-
native local shape detectors, we have demonstrated the successful recovery of detailed
3D object shape and pose from single input images. We believe that this high level of
geometric detail in an important ingredient to advance scene-level reasoning beyond
what can be achieved with box-level object class representations.

In an extensive experimental study on the object classes car and bicycle, we have quan-
tified the ability of our proposed system to recover detailed geometric object hypotheses
from single images. The model has been tested in four different settings, ranging from
accurate 2D localization of object parts, through continuous pose estimation, to ultra-wide
baseline matching and fine-grained categorization of car and bicycle types. Throughout,
the performance is on par with or higher than previously reported results.

In the future, we plan to extend the present work in two directions, namely to explicitly
handle occluded object parts, and to reason jointly over multiple instances of several
object classes in the same scene, in order to exploit the additional constraints due to the
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(1) (2) (3) (4)

Figure 3.10: Example detections using the full system: estimated wireframes (yellow dots
mark visible parts). 3D Object Classes cars (rows (a), (b)), Pascal VOC 2006 cars (row
(c)), 3D Object Classes bicycles (rows (d) - (f)), EPFL Multi-view cars (rows (g)). Suc-
cessful detections (columns (1) - (3)), typical failure cases (column (4)).
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 3.11: Fully automatic 3D geometry estimation from single still images of 3D Object
classes cars (rows (a) - (c)) and bicycles ((d) - (f)) using the full system (edges of nearest
database CAD models rendered in red; ground plane inferred from wheel positions). Ultra-
wide baseline matching from car image pairs (row (g)).

common viewpoint as well as interactions between objects.
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4.1 Abstract

Despite the success of current state-of-the-art object class detectors, severe occlusion
remains a major challenge. This is particularly true for more geometrically expressive 3D
object class representations. While these representations have attracted renewed interest
for precise object pose estimation, the focus has mostly been on rather clean datasets,
where occlusion is not an issue. In this paper, we tackle the challenge of modeling occlu-
sion in the context of a 3D geometric object class model that is capable of fine-grained,
part-level 3D object reconstruction. Following the intuition that 3D modeling should facil-
itate occlusion reasoning, we design an explicit representation of likely geometric occlu-
sion patterns. Robustness is achieved by pooling image evidence from of a set of fixed
part detectors as well as a non-parametric representation of part configurations in the
spirit of poselets. We confirm the potential of our method on cars in a newly collected
data set of inner-city street scenes with varying levels of occlusion, and demonstrate su-
perior performance in occlusion estimation and part localization, compared to baselines
that are unaware of occlusions.

4.2 Introduction

In recent years there has been a renewed interest in 3D object (class) models for
recognition and detection. This trend has lead to a fruitful confluence of ideas from
object detection on one side and 3D computer vision on the other side. State-of-the-art
methods are not only capable of view-point invariant object categorization, but also give
an estimate of the object’s 3D pose (Savarese and Fei-Fei, 2007; Liebelt et al., 2008),
and the locations of its parts (Li et al., 2011; Pepik et al., 2012a). Some go as far as

70



4.2 Introduction 71

Figure 4.1: Fully automatic 3D shape, pose, and occlusion estimation.

estimating 3D wireframe models and continuous pose from single images (Zia et al.,
2011; Leotta and Mundy, 2011; Zia et al., 2013).

Still, viewpoint-invariant detection and modeling is far from being solved, and several
open research questions remain. Here, we focus on the problem of (partial) occlusion
by other scene parts. Knowing the detailed part-level occlusion pattern of an object is
valuable information both for the object detector itself and for higher-level scene models
that use the object class model. In fact, 3D object detection under severe occlusions is
still a largely open problem. Most detectors (Dalal and Triggs, 2005; Felzenszwalb et al.,
2010) break down at occlusion levels of ≈20%.

However, when working with an explicit 3D representation of an object class, it should
in principle be possible to estimate that pattern. Addressing self-occlusion is rather
straight-forward with a 3D representation (Xiang and Savarese, 2012; Zia et al., 2011),
since it is fully determined by the object shape and pose. On the other hand, inter-object
occlusion is much harder to model, because it introduces relatively many additional
unknowns (the occlusion states of all individual regions/parts of the object). Some
part-based models resort to a data-driven strategy: every individual part can be occluded
or unoccluded, and that latent state is estimated together with the object shape and pose
(Li et al., 2011; Girshick et al., 2011).

Such a model has two weaknesses: first, it does not make any assumptions about
the nature of the occluder, and can therefore lead to rather unlikely occlusion patterns
(e.g. arbitrarily scattered small occluders). And second, it will have limited robustness,
require careful tuning, and be hard to adapt to different scenarios. The latter is due to
the tendency to simply label any individual part as occluded whenever it does not fit the
evidence, and the associated brittle trade-off between the likelihood of occlusion and the
uncertainty of the image evidence.

We argue that in many scenarios a per-part occlusion model is unnecessarily general.
Rather, one can put a strong prior on the co-occurrence of part occlusions, because most
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occluders are compact objects, and all one needs to know about them is the (also com-
pact) projection of their outline onto the image plane. We therefore propose to restrict the
possible occluders to a small finite set that can be explicitly enumerated, and to estimate
the type of occluder and its location during inference. The very simple, but powerful intu-
ition behind this is that when restricted to compact regions inside the object’s bounding
box, the number of possible occlusion patterns is in fact very small. Still such an occluder
model is more general than one that only truncates the bounding box from left, right,
above or below e.g. Wang et al. (2009); Enzweiler et al. (2010) or at image boundaries
(Vedaldi and Zisserman, 2009), cf. Figure 4.2. E.g. , the proposed model can repre-
sent a vertical pole occluding the middle of the object, a frequent case in urban scenarios.

The contribution described in this paper is a viewpoint-invariant method for detailed re-
construction of severely occluded objects in monocular images. To obtain a complete
framework for detection and reconstruction, the novel method is initialized with a variant
of the poselets framework (Bourdev and Malik, 2009) adapted to the needs of our 3D ob-
ject model. The object representation itself has three parts: a deformable shape model in
the form of an active shape model defined over local object parts, an appearance model
which integrates evidence from detectors for the parts as well as their configurations,
and an occlusion model in the form of a set of occlusion masks. Experiments on images
with strong occlusions show that the model can correctly infer even large occluders, and
enables monocular 3D modeling in situations where representations without occlusion
model fail.

4.3 Related work

In the early days of computer vision, 3D object models with a lot of geometric de-
tail (Roberts, 1963; Brooks, 1981; Lowe, 1987; Sullivan et al., 1995) commanded a lot
of interest, but unfortunately failed to tackle challenging real world imagery. Most current
object class detectors provide coarse outputs in the form of 2D or 3D bounding boxes
along with classification into a discrete set of viewpoints (Yan et al., 2007; Savarese
and Fei-Fei, 2007; Liebelt et al., 2008; Felzenszwalb et al., 2010; Ozuysal et al., 2009;
Stark et al., 2010; Villamizar et al., 2011; Payet and Todorovic, 2011; Glasner et al., 2011).

Recently, there has been renewed interest in providing geometrically more detailed
outputs, with different degrees of geometric consistency across viewpoints (Li et al.,
2011; Zia et al., 2011; Xiang and Savarese, 2012; Pepik et al., 2012a; Hejrati and
Ramanan, 2012; Zia et al., 2013). Such models have the potential to enhance high-level
reasoning about objects and scenes, e.g. Hoiem et al. (2008); Ess et al. (2009); Wang
et al. (2010); Hedau et al. (2010); Wojek et al. (2010).

Unfortunately occlusion, which is one of the most challenging impediments to visual
object class modeling, has largely remained untouched in the context of such fine-grained
object models. Recent attempts at occlusion reasoning in 2D object recognition include
modeling the visibility/occluder mask (Fransens et al., 2006; Wang et al., 2009; Vedaldi
and Zisserman, 2009; Gao et al., 2011; Kwak et al., 2011), training detectors for occluded
objects in specific frequently found configurations (Tang et al., 2012), using depth and/or
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motion cues (Enzweiler et al., 2010; Meger et al., 2011), asserting an “occluder part”
when part evidence is missing (Girshick et al., 2011), applying RANSAC to choose a
subset of parts (Li et al., 2011), encoding occlusion states using local mixtures (Hejrati
and Ramanan, 2012), and using a large number of partial object detectors which cluster
together to give the full object (Bourdev and Malik, 2009), without explicit occluder
modeling.

Fixed global object models have been known to give good results for fully visible object
recognition (Dalal and Triggs, 2005), often outperforming part-based models. However,
part-based models have unsurprisingly been found preferable for occlusion invariant de-
tection (Bourdev and Malik, 2009; Girshick et al., 2011); in fact even when “global” mod-
els are extended to cope with occlusions (Wang et al., 2009; Kwak et al., 2011) they
are divided into many local cells, which are effectively treated as parts with fixed relative
locations. Part-based 3D object models with strong geometric constraints as Li et al.
(2011); Zia et al. (2011) are thus strong candidates for part-level occlusion reasoning:
they can cope with locally missing evidence, but still ensure the relative part placement
always corresponds to a plausible global shape. On the downside, these are computa-
tionally fairly expensive models, therefore their evaluation on images in Li et al. (2011) is
limited to a small bounding box around the object of interest. We thus propose a two-layer
model, where objects are first detected with a variant of the poselet method (Bourdev
and Malik, 2009) to obtain a rough localization and pose; then a detailed shape, pose and
occlusion mask are inferred with an explicit 3D model as in Zia et al. (2011, 2013), which
also includes the additional clues for part placement afforded by the preceding detector.
Note that the two layers go together well, since spatially compact occluders will leave
configurations of adjacent object parts (“poselets”) visible.

4.4 Model

We propose to split 3D object detection and modeling into two layers. The first layer is
a representation in the spirit of the poselet framework (Bourdev and Malik, 2009), i.e. a
collection of viewpoint-dependent part configurations tied together by relatively loose
geometric constraints. The purpose of this layer is to find, in a large image, approximate
2D bounding boxes with rough initial estimates of the objects’ pose. The part-based
structure enables the model to deal with partial occlusion, and provides evidence for
visible configurations that can be used in the second layer.

The second layer is a 3D active shape model based on local parts, augmented with a
collection of explicit occlusion masks. The ASM tightly constrains the object geometry
to plausible shapes, and thus can more robustly predict object shape when parts are
occluded, respectively predict the locations of the occluded parts. The model also
includes the activations of the configurations from the first layer as additional evidence,
tying the two layers together.
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(a) (b)

Figure 4.2: (a) Two larger part configurations comprising of multiple smaller parts, as
well as their relative distributions, (b) a few example occlusion masks.

Parts and part configurations

We start the explanation with the local appearance model. The atomic units of our
representation are parts, which are small square patches located at salient points of
the object. The patches are encoded with densely sampled shape-context descriptors
(Andriluka et al., 2009), and a multi-class Random Forest is trained to recognize them.
The classifier is viewpoint-invariant, meaning that one class label includes views of a
part over all poses in which the part is visible (Zia et al., 2013). This marginalization over
viewpoints speeds up part detection (which is the bottleneck of the method) by an order
of magnitude1 compared to individual per-viewpoint classifiers (Andriluka et al., 2009;
Stark et al., 2010; Zia et al., 2011), while we did not observe a perfomance drop at the
system level in spite of visibly blurrier part likelihoods. Additionally, the classifier also has
a background class, which will be used for normalization (cf. Section4.4). Like Stark et al.
(2010); Zia et al. (2011, 2013) we exploit the fact that with modern descriptors the part
classifier can be trained mostly on synthetic renderings of 3D CAD models rather than
on real data, which massively reduces the annotation effort.

The basic unit of the first layer are larger part configurations ranging in size from 25% to
60% of the full object extent. These are defined in the spirit of poselets: Small sets of the
local parts described above are chosen and clustered (with standard k-means) according
to the parts’ spatial layout. The advantage of this clustering is that it discovers when ob-
ject portions have high variability in appearance, e.g. the rear portion of sedans vs. hatch-
backs as seen in a side view. To account for the spatial variability within a configuration,
a single component DPM detector (Felzenszwalb et al., 2010) is trained for each configu-
ration. We found that for these detectors real training data is needed, thus they are trained
on annotated training images.

Geometric model

As explained earlier, we employ different geometric models for the initial detection and
the subsequent 3D modeling. The first layer follows the philosophy of the ISM/poselet
method. For each configuration the mean offset from the object centroid as well as the

1Also, training is two orders of magnitude faster.
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mean relative scale are stored during training, and at test time detected configurations
cast a vote for the object center and scale. These votes are then combined via greedy
agglomerative clustering, similar to Bourdev and Malik (2009). After non-maximum
suppression, the output of the first layer consists of a set of approximate 2D bounding
boxes, each with a coarse pose estimate (quantized to 8 canonical viewpoints) and a list
of activated configurations.

The second layer utilizes a more explicit representation of global object geometry that is
better suited for estimating detailed 3D object shape and pose. In the tradition of active
shape models we learn a deformable 3D wireframe from annotated 3D CAD models, like
in Zia et al. (2011, 2013). The wireframe model is defined through an ordered collection of
n vertices in 3D-space, chosen at salient points on the object surface in a fixed topological
layout. Following standard point-based shape analysis (Cootes et al., 1995) the object
shape and variability are represented as the sum of a mean wireframe µ and deformations
along r principal component directions pj. The geometry parameters sk determine the
amount of deviation from the mean shape (in units of standard deviation σj along the
respective directions): X(s) = µ+

∑r
k=1 skσkpk+ε. The parts described above are defined

as small windows around the 2D projection of such a vertex (≈10% in size of the full
object width). The parts cover the full extent of the represented object class, thus they
allow for fine-grained estimation of 3D geometry and continuous pose, as well as for
detailed reasoning about occlusion relations. We point out once more that these parts
are viewpoint-independent, i.e. a part covers the appearance of a vertex over the entire
viewing sphere.

Explicit occluder representation

While the first layer contains only implicit information about occluders (in the form of
supposedly visible, but undetected configurations), the second layer includes an explicit
occluder representation. Occluders are assumed to block the view onto a spatially
connected region of the object. Due to the object being modeled as a sparse collection
of parts, occluders can only be distinguished if the visibility of at least one part changes,
which further reduces the space of possible occluders. Thus, one can well approximate
the set of all occluders by a discrete set of occlusion masks a (for convenience we
denote the empty mask which leaves the object fully visible by a0). Figure 4.2(b) shows
exemplary occlusion masks.

With that set, we aim to explicitly recover the occlusion pattern during second-layer
inference, by selecting one of the masks. All parts falling inside the occlusion mask
are considered occluded, and consequently their detection scores are not considered
in the objective function (Section 4.4). Instead, they are assigned a fixed low score,
corresponding to a weak uniform prior that prefers parts to be visible and counters the
bias to “hide behind the occluder”.

Occlusion of parts is modeled by indicator functions oj(s,θ, a), where j represents the
part index, s represents the object geometry (Section 4.4) and θ the viewpoint. The set of
masks ai act as a prior that specifies which parts occlusions can co-occur. For complete-
ness we mention that object self-occlusion is modeled with the same indicator variables,
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but does not require separate treatment, since it is completely determined by shape and
pose.

Shape, pose, and occlusion estimation

During inference, we attempt to find instances of the 3D shape model and of the occlusion
mask that best explain the observed image evidence. Recall that we wish to estimate an
object’s 3D pose (5 parameters, assuming no in-plane rotation), geometric shape (7 ASM
shape parameters), and an occluder index (1 parameter). Taken together, we are faced
with a 13-dimensional search problem, which would be prohibitively expensive even for a
moderate image size. We therefore first cut down the search space in the first layer with
a simpler and more robust object detection step, and then fit the full model locally at a
small number of (candidate) detections.

First layer inference starts by detecting instances of our part configurations in the
image with the corresponding DPM detectors. Each detected configuration casts an
associated vote for the full object 2D location and scale q = (qx, qy, qs), and for the pose
θ = (θaz, θel). At this point, the azimuth angle is restricted to a small set of discrete steps
and the elevation angle is fixed, both to be refined in the second layer. The votes are
clustered with a greedy agglomerative clustering scheme as in Bourdev and Malik (2009)
to obtain detection hypotheses H, each with a list of contributing configurations {l1 . . . lp}
that voted for the object’s presence.

Part location prediction from first layer. Since the configurations are made up of
multiple parts confined to a specific layout with little spatial variability (Section 4.4),
their detected instances li already provide some information about the part locations
in image space. The means µij and covariances σ2

ij of the parts’ locations within a
configuration’s bounding box are estimated from the training data, and vij are binary flags
indicating which parts j are found within the configuration li. Figure 4.2(a) illustrates two
such larger configurations, whose detection can be used to predict the location of the
constituent parts as gaussian distributions with the respective means and covariances
relative to the bounding box of the configuration.2

Second layer objective function. After evaluating the first layer of the model we are left
with a sparse set of (putative) detections, such that we can afford to evaluate a relatively
expensive objective function. We denote an object instance by h = (s, f,θ,q, a) , com-
prising of shape parameters s (eqn. 4.4), camera focal length f , viewpoint parameters
for azimuth and elevation θ, and translation and scale parameters in image space q.
The projection matrix P that maps the 3D vertices Xj(s) to image points xj is assumed
to depend only on θ, and q, while f is fixed, assuming similar perspective effects for all
images: xj =P(f,θ,q)Xj(s).

2In practice it is beneficial to only use configurations whose part predicitons are sufficiently accurate,
as determined by cross-validation.
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Fitting the model amounts to finding a MAP-estimate of the objective function L(h):

ĥ = arg maxh [L(h)] , (4.1)

L(h)=max
ς

[
1∑m

j=1 oj(s,θ, a0)

m∑
j=1

(
Lv+Lo+Lc

)]
. (4.2)

The factor 1/
∑m

j=1 oj(s,θ, a0) normalizes for the varying number of self-occluded parts
at different viewpoints. For each potentially visible part there are three terms: Lv is the
evidence Sj(ς,xj) for part j if it is visible, found by looking up the detection score at
image location xj and scale ς. Part likelihoods are normalized with the background score
Sb(ς,xj), as in Villamizar et al. (2011). Lo assigns a fixed likelihood c to the part, if it lies
under the occlusion mask. Lc measures how well the part j is predicted by the larger
configurations.

Lv = oj(s,θ, a) log
Sj(ς,xj)

Sb(ς,xj)
, (4.3)

Lo =
(
oj(s,θ, a0)− oj(s,θ, a)

)
c , (4.4)

Lc=
oj(s,θ, a)

p

p∑
i=1

vij log
(
1+λN (xj;µij,σ

2
ij)
)
. (4.5)

Second layer inference. The objective (4.2) is a mixed discrete-continuous function
which is neither convex nor smooth, and thus cannot be easily maximized. We find an
approximate MAP-estimate ĥ with sample-based stochastic hill-climbing. Specifically, we
maintain a set of weighted samples (particles), each corresponding to a distinct set of
values in the space of object hypotheses {s,θ,q, a}. Particles are iteratively updated,
by re-sampling individual parameters from independent Gaussians centered at the
current values, similar to Leordeanu and Hebert (2008). In our scheme the variances of
these Gaussians are gradually reduced according to a fixed annealing schedule. Other
than the remaining parameters, the mask indices a are discrete and have no obvious
ordering. To define similarity between them we sort the set of masks w.r.t. the Hamming
distance from the current one, then we sample the offset in this ordering from a Gaussian.

The inference is initialized at the location, scale and pose returned by the first layer, while
the initial shape parameters are chosen randomly and the occlusion mask is set to a0.

4.5 Experiments

In the following, we evaluate the performance of our approach in detail, focusing on
its ability to recover fine-grained, part-level accurate object shape and accompanying
occlusion estimates. In particular, we quantify the ability of our method to localize entire
objects (Section 4.5), to localize their constituent parts (Section 4.5), and to estimate
occluded object portions (in the form of part occlusion labels), for varying levels of
occlusion (Section 4.5).
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The free parameters for (4.4) and (4.5) are estimated by cross-validation on the 3D Object
Classes (Savarese and Fei-Fei, 2007), for which part level annotations are publicly avail-
able (Zia et al., 2011). The set of 288 occlusion masks has been generated automatically
and pruned manually to exclude very unlikely masks.

Data set

As a testbed we have collected a novel, challenging data set of inner-city street scenes.
It consists of 101 images of resolution 2 mega-pixels, showing street scenes with cars,
with occlusions ranging from 0% to >60% of the bounding box as well as the parts. Al-
though there are several publicly available car datasets, none of them is suitable for our
purposes, since we found that part detector performance deteriorates significantly for ob-
jects smaller than 60 pixels in height. Some datasets do not contain occluded cars (e.g.
3D Object Classes (Savarese and Fei-Fei, 2007), EPFL Multiview Cars (Ozuysal et al.,
2009)); others do, but have rather low resolution (Ford Campus Vision and Lidar, Pas-
cal VOC (Everingham et al., 2010)), which makes them unsuitable for detailed geometric
model fitting – and also seems unrealistic, given today’s omnipresent high-resolution cam-
eras. We further opted for taking the pictures ourselves, in order to avoid the strong bias
of internet search towards high-contrast, high-saturation images. Figures 4.4,4.5 show
example images from the new data set.3

Model variants and baselines

We evaluate and compare the performance of the following competing models: (i) a naive
baseline without 3D estimation, which places a fixed canonical 3D car (the mean of our
active shape model) inside the detected first-layer bounding box in the estimated (dis-
crete) pose. (ii) the ASM model of Chapter 3, which corresponds to the second layer
of our model without any form of occlusion reasoning (i.e. assuming that all parts are
visible except for self-occlusions), and without using the part configurations from the
first layer. (iii) the proposed model, including prediction of occluders, but not using the
configurations during second-layer inference. (iv) our full model with occluder prediction
and leveraging additional evidence from configurations for second-layer inference.

Object localization

We commence by verifying that our first layer, i.e. a combination of DPM configuration
detectors and poselet-style voting, is competitive with alternative algorithms for detecting
objects in 2D. To that end we compare our first layer, trained on a dataset comprising
of around 1000 full car images downloaded from the internet, with the original poselet
implementation (Bourdev and Malik, 2009) pre-trained on Pascal VOC (Everingham
et al., 2010) (training code for Bourdev and Malik (2009) is not publicly available).
We also include the deformable part model (DPM, Felzenszwalb et al., 2010), both
trained on the same 1000 car images (using default parameters), as well as the
pre-trained model (on Pascal VOC (Everingham et al., 2010)), as a popular state-of-the-
art reference. Unfortunately neither of these implementations directly outputs a viewpoint.

3The data set, along with all training data and annotations, pre-trained models, and source code is
made available at http://www.igp.ethz.ch/photogrammetry/downloads.

http://www.igp.ethz.ch/photogrammetry/downloads
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Figure 4.3: Object detection acuracy of different 2D detectors.

Protocol. We follow the classical object detection protocol of Pascal VOC (Ever-
ingham et al., 2010), plotting precision vs. recall for 50% intersection-over-union between
predicted and ground truth bounding box.

Results. Precision-recall curves are shown in Figure 4.3. We observe that the
original poselets (Bourdev and Malik, 2009) already perform reasonably well on our
data (67% AP). The pre-trained DPM (Felzenszwalb et al., 2010) improves the results
to 76% AP , and the retrained model, to 79% AP. Our first layer outperforms both by a
significant margin, achieving 88% AP, which we consider a solid basis for the subsequent
3D inference. In particular we point out that the combination of a strong part detector
with Hough-style voting reaches high recall (up to 95%) at reasonable precision. The fact
that only few instances are irrevocably lost in the first layer confirms that splitting into a
coarse detection layer and a detailed modeling layer is a viable approach (see Table 4.1).

Full <80% <60%
dataset visibility visibility

Total cars 165 96 48
Detected 147 85 42

Table 4.1: First-layer detection results (bounding box and 1D pose). Subsequent second-
layer results are given for the detected instances (line “detected”).
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Occlusion estimation

We proceed by evaluating how well our model can distinguish between occluded and
unoccluded parts. Note that while this ability is potentially also useful for further reasoning
about the occluder, its primary importance here lies in the 3D object modeling itself: a
good estimate of the part-level occlusion state is necessary in order not to mistakenly
use evidence from background structures, and hence forms the basis for recovering the
objects’ 3D extent and shape.

Protocol. The predicted part occlusions are evaluated as two-class classification:
we first remove all self-occluded parts, and then compare occlusion labeling oj induced
by the estimated occluder ai to ground truth annotations.

Results. Table 4.2 shows the percentages of correctly inferred part occlusions.
First, we observe that the acuracy decreases with increasing occlusion level, matching
our intuition. Baseline 1 is obviously not applicable, since it offers no possibility to decide
about part-level occlusion. To make the second baseline comparable, which also does
not make occlusions explicit, we place a threshold (equal in value to c used in the
likelihood (4.2)) on part detection scores and call parts with too low scores occluded.
Although that heuristic works surprisingly well, our occlusion inference outperforms
the baseline by significant margins (4.5 – 5.9%) for all levels of occlusion. Additionally
using the active configurations from the first layer during inference boosts classification
performance by a further 1.2 – 3.0%. We point out that the additional evidence provided
by the larger configurations is most beneficial at high levels of occlusion, and that even
for heavily occluded vehicles that are only 30 – 60% visible, 83.1% of the part occlusions
are correctly predicted.

Full < 80% < 60 %
dataset visibility visibility

baseline 1 — — —
baseline 2 (Zia et al., 2011, 2013) 79.5% 76.7% 75.6%

w/o configurations (ours) 84.4% 82.6% 80.1%
w/ configurations (ours) 85.6% 84.7% 83.1%

Table 4.2: Part-level occlusion prediction (percentage of correctly classified parts). See
text for details.

Part localization

The primary goal of our occlusion model is better 3D object modeling: we wish to
correctly predict objects’ spatial extent, shape and pose, to support higher-level tasks
such as monocular depth estimation, free-space computation and physically plausible,
collision-free scene understanding. To quantify the ability to recover 3D extent and shape,
we assess how well individual parts of the 3D geometric model can be localized. Since
we have no 3D ground truth, part localization accuracy is measured in the 2D image
plane by comparing to manual annotations.
Protocol. We follow the common evaluation protocol of human body pose estimation
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and report the average percentage of correctly localized parts, using a relative threshold
adjusted to the size of the car. The threshold is set to 20 pixels for a car of size 500 × 170
pixels, i.e. ≈ 4% of the total length.

Results. Part localization results for different levels of oclusion are given in Ta-
ble 4.3. We make the following observations. First, baseline 1 performs poorly, i.e. the
bounding box and pose predictions of a 2D detector and/or a rigid average car are
insufficient. Second our occlusion-aware approach outperforms the 3D-ASM of Zia
et al. (2011, 2013) without occlusion modeling by 2.5% on the entire dataset, and that
margin increases to 5.3% for the heavily occluded cars. Third, adding evidence form
configurations brings only a small improvement for the full dataset, but the improvement
is more pronounced for heavier occlusions. Finally, we manage to sucessfully localize
> 80% of the parts even at occlusion levels of 40% or more.

Figure 4.5 shows qualitative examples, highlighting the differences between the naive
baseline 1, the baseline approach without occlusion modeling (Zia et al., 2011, 2013),
and the two evaluated variants of our model. Clearly, the fits without occlusion model
are severely disturbed in the presence of even moderate occlusion. Our approach
without configurations seems to perform as well as the full model when it comes to
predicting the occluder, but is slightly more prone to mistakes concerning the overall
object shape (e.g., rows a, b). Figure 4.4 shows further qualitative results of the full model.

Full < 80% < 60 %
dataset visibility visibility

baseline 1 32.0% 33.6% 39.7%
baseline 2 (Zia et al., 2011, 2013) 80.0% 75.6% 74.5%

w/o configurations (ours) 82.5% 80.0% 79.8%
w/ configurations (ours) 82.7% 80.7% 83.5%

Table 4.3: Part localization accuracy (percentage of correctly localized parts). See text for
details.

4.6 Conclusion

We have explored the problem of occlusion in the context of geometric, part-based 3D
object class representations for object detection and modeling. We have proposed a
two-layer model, consisting of a robust, but coarse 2D object detector, followed by a
detailed 3D model of pose and shape. The first layer accumulates votes from view-point
dependent part configurations, such that it can tolerate quite large degrees of occlusion,
but does not explicitly detect them. The second layer combines an explicit deformable 3D
shape model over smaller parts with evidence from the first-level configurations, as well
as with an explicit occlusion model in the form of a collection of possible occlusion masks.
Although that representation of occlusion is rather simple, experiments on detecting
and modeling cars in a dataset of street scenes have confirmed the model to correctly
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Figure 4.4: Example detections using our full system.

estimate both the occlusion pattern and the car shape and pose even under severe
occlusion, clearly outperforming a baseline that is agnostic about occlusions.

Acknowledgements. This work has been supported by the Max Planck Center for Visual
Computing and Communication.
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(a)

(b)

(c)

(d)

(e)

(f)

(1) (2) (3) (4)

Figure 4.5: Comparing model fits: canonical car shape in detected bounding box i.e. base-
line 1 (column 1), baseline 2 (Zia et al., 2011, 2013) (column 2), without poselets (column
3), with poselets (column 4).
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5.1 Abstract

Current approaches to semantic image and scene understanding typically employ rather
simple object representations such as 2D or 3D bounding boxes. While such coarse mod-
els are robust and allow for reliable object detection, they discard much of the information
about objects’ 3D shape and pose, and thus do not lend themselves well to higher-level
reasoning. Here, we propose to base scene understanding on a high-resolution object
representation. An object class – in our case cars — is modeled as a deformable 3D
wireframe, which enables fine-grained modeling at the level of individual vertices and
faces. We augment that model to explicitly include vertex-level occlusion, and embed all
instances in a common coordinate frame, in order to infer and exploit object-object interac-
tions. Specifically, from a single view we jointly estimate the shapes and poses of multiple
objects in a common 3D frame. A ground plane in that frame is estimated by consensus
among different objects, which significantly stabilizes monocular 3D pose estimation. The
fine-grained model, in conjunction with the explicit 3D scene model, further allows one to
infer part-level occlusions between the modeled objects, as well as occlusions by other,
unmodeled scene elements. To demonstrate the benefits of such detailed object class
models in the context of scene understanding we systematically evaluate our approach
on the challenging KITTI street scene dataset. The experiments show that the model’s
ability to utilize image evidence at the level of individual parts improves monocular 3D
pose estimation w.r.t. both location and (continuous) viewpoint.

84
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2D / 3D Bounding Box 

3D Shape (ours) 

Figure 5.1: Top: Coarse 3D object bounding boxes derived from 2D bounding box detec-
tions (not shown). Bottom: our fine-grained 3D shape model fits improve 3D localization
(see bird’s eye views).

5.2 Introduction

The last ten years have witnessed great progress in automatic visual recognition and
image understanding, driven by advances in local appearance descriptors, the adoption
of discriminative classifiers, and more efficient techniques for probabilistic inference. In
several different application domains we now have semantic vision sub-systems that
work on real-world images. Such powerful tools have sparked a renewed interest in the
grand challenge of visual 3D scene understanding. Meanwhile, individual object detection
performance has reached a plateau after a decade of steady gains (Everingham et al.,
2010), further emphasizing the need for contextual reasoning.

A number of geometrically rather coarse scene-level reasoning systems have been pro-
posed over the past few years (Hoiem et al., 2008; Wang et al., 2010; Hedau et al., 2010;
Gupta et al., 2010; Silberman et al., 2012), which apart from adding more holistic scene
understanding also improve object recognition. The addition of context and the step to
reasoning in 3D (albeit coarsely) makes it possible for different vision sub-systems to
interact and improve each other’s estimates, such that the sum is greater than the parts.
Very recently, researchers have started to go one step further and increase the level-
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of-detail of such integrated models, in order to make better use of the image evidence.
Such models learn not only 2D object appearance but also detailed 3D shape (Xiang
and Savarese, 2012; Hejrati and Ramanan, 2012; Zia et al., 2013). The added detail
in the representation, typically in the form of wireframe meshes learned from 3D CAD
models, makes it possible to also reason at higher resolution: beyond measuring image
evidence at the level of individual vertices/parts one can also handle relations between
parts, e.g. shape deformation and part-level occlusion (Zia et al., 2013). Initial results are
encouraging. It appears that the more detailed scene interpretation can be obtained at a
minimal penalty in terms of robustness (detection rate), so that researchers are beginning
to employ richer object models to different scene understanding tasks (Choi et al., 2013;
Del Pero et al., 2013; Zhao and Zhu, 2013; Xiang and Savarese, 2013; Zia et al., 2014a).
Here we describe one such novel system for scene understanding based on monocular
images. Our focus lies on exploring the potential of jointly reasoning about multiple ob-
jects in a common 3D frame, and the benefits of part-level occlusion estimates afforded
by the detailed representation. We have shown in previous work (Zia et al., 2013) how a
detailed 3D object model enables a richer pseudo-3D (x, y, scale) interpretation of simple
scenes dominated by a single, unoccluded object—including fine-grained categorization,
model-based segmentation, and monocular reconstruction of a ground plane. Here, we
lift that system to true 3D, i.e. CAD models are scaled to their true dimensions in world
units and placed in a common, metric 3D coordinate frame. This allows one to reason
about geometric constraints between multiple objects as well as mutual occlusions, at
the level of individual wireframe vertices.

Contributions. We make the following contributions.
First, we propose a viewpoint-invariant method for 3D reconstruction (shape and pose es-
timation) of severely occluded objects in single-view images. To obtain a complete frame-
work for detection and reconstruction, the novel method is bootstrapped with a variant of
the poselets framework (Bourdev and Malik, 2009) adapted to the needs of our 3D object
model.
Second, we reconstruct scenes consisting of multiple such objects, each with their indi-
vidual shape and pose, in a single inference framework, including geometric constraints
between them in the form of a common ground plane. Notably, reconstructing the fine
detail of each object also improves the 3D pose estimates (location as well as viewpoint)
for entire objects over a 3D bounding box baseline (Figure 5.1).
Third, we leverage the rich detail of the 3D representation for occlusion reasoning at the
individual vertex level, combining (deterministic) occlusion by other detected objects with
a (probabilistic) generative model of further, unknown occluders. Again, integrated scene
understanding yields improved 3D localization compared to independently estimating oc-
clusions for each individual object.
And fourth, we present a systematic experimental study on the challenging KITTI street
scene dataset (Geiger et al., 2012). While our fine-grained 3D scene representation can
not yet compete with technically mature 2D bounding box detectors in terms of recall, it
offers superior 3D pose estimation, correctly localizing > 43% of the detected cars up to
1 m and > 55% up to 1.5 m, even when they are heavily occluded.

Parts of this work appear in two preliminary conference papers (Zia et al., 2013, 2014a).
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The present paper describes our approach in more detail, extends the experimental
analysis, and describes the two contributions (extension of the basic model to occlusions,
respectively scene constraints) in a unified manner.

The remainder of this paper is structured as follows. Section 3 reviews related work.
Section 4 introduces our 3D geometric object class model, extended in Section 5 to entire
scenes. Section 6 gives experimental results, and Section 7 concludes the paper.

5.3 Related work

Detailed 3D object representations. Since the early days of computer vision research,
detailed and complex models of object geometry were developed to solve object
recognition in general settings, taking into account viewpoint, occlusion, and intra-class
variation. Notable examples include the works of Kanade (1980) and Malik (1987), who
lift line drawings of 3D objects by classifying the lines and their intersections to common
occurring configurations; and the classic works of Brooks (1981) and Pentland (1986),
who represent complex objects by combinations of atomic shapes, generalized cones
and super-quadrics. Matching CAD-like models to image edges also made it possible to
address partially occluded objects (Lowe, 1987) and intra-class variation (Sullivan et al.,
1995).

Unfortunately, such systems could not robustly handle real world imagery, and largely
failed outside controlled lab environments. In the decade that followed researchers
moved to simpler models, sacrificing geometric fidelity to robustify the matching of the
models to image evidence—eventually reaching a point where the best-performing image
understanding methods were on one hand bag-of-features models without any geometric
layout, and on the other hand object templates without any flexibility (largely thanks to
advances in local region descriptors and statistical learning).

However, over the past years researchers have gradually started to re-introduce more
and more geometric structure in object class models and improve their performance (e.g.
Leibe et al., 2006; Felzenszwalb et al., 2010). At present we witness a trend to take the
idea even further and revive highly detailed deformable wireframe models (Zia et al.,
2009; Li et al., 2011; Zia et al., 2013; Xiang and Savarese, 2012; Hejrati and Ramanan,
2012). In this line of work, object class models are learnt from either 3D CAD data (Zia
et al., 2009, 2013) or images (Li et al., 2011). Alternatively, objects are represented as
collections of planar segments (also learnt from CAD models, Xiang and Savarese, 2012)
and lifted to 3D with non-rigid structure-from-motion. In this paper, we will demonstrate
that such fine-grained modelling also better supports scene-level reasoning.

Occlusion modeling. While several authors have investigated the problem of occlusion
in recent years, little work on occlusions exists for detailed part-based 3D models, notable
exceptions being (Li et al., 2011; Hejrati and Ramanan, 2012).

Most efforts concentrate on 2D bounding box detectors in the spirit of HOG (Dalal and
Triggs, 2005). Fransens et al. (2006) model occlusions with a binary visibility map over a
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fixed object window and infer the map with expectation-maximization. In a similar fashion,
sub-blocks that make up the window descriptor are sometimes classified into occluded
and non-occluded ones (Wang et al., 2009; Gao et al., 2011; Kwak et al., 2011). Vedaldi
and Zisserman (2009) use a structured output model to explicitly account for truncation
at image borders and predict a truncation mask at both training and test time. If available,
motion (Enzweiler et al., 2010) and/or depth (Meger et al., 2011) can serve as additional
cues to determine occlusion, since discontinuities in the depth and motion fields are
more reliable indicators of occlusion boundaries than texture edges.

Even though quite some effort has gone into occlusion invariance for global object
templates, it is not surprising that part-based models have been found to be better suited
for the task. In fact even fixed windows are typically divided into regular grid cells that one
could regard as “parts" (Wang et al., 2009; Gao et al., 2011; Kwak et al., 2011). More
flexible models include dedicated DPMs for commonly occuring object-object occlusion
cases (Tang et al., 2012) and variants of the extended DPM formulation (Girshick et al.,
2011), in which an occluder is inferred from the absence of part evidence. Another
strategy is to learn a very large number of partial configurations (“poselets") through
clustering (Bourdev and Malik, 2009), which will naturally also include frequent occlusion
patterns. The most obvious manner to handle occlusion in a proper part-based model is
to explicitly estimate the oclusion states of the individual parts, either via RANSAC-style
sampling to find unoccluded ones (Li et al., 2011), or via local mixtures (Hejrati and
Ramanan, 2012). Here we also store a binary occlusion flag per part, but explicitly
enumerate allowable occlusion patterns and restrict the inference to that set.

Qualitative scene representations. Beyond detailed geometric models of individual
objects, early computer vision research also attempted to model entire scenes in 3D
with considerable detail. In fact the first PhD thesis in computer vision (Roberts, 1963)
modeled scenes comprising of polyhedral objects, considering self-occlusions as well as
combining multiple simple shapes to obtain complex objects. Koller et al. (1993) used
simplified 3D models of multiple vehicles to track them in road scenes, whereas Haag
and Nagel (1999) included scene elements such as trees and buildings, in the form
of polyhedral models, to estimate their shadows falling on the road, as well as vehicle
motion and illumination.

Recent work has revisited these ideas at the level of plane- and box-type models.
E.g., Wang et al. (2010) estimate the geometric layout of walls in an indoor setting,
segmenting out the clutter. Similarly, Hedau et al. (2010) estimate the layout of a room
and reason about the locations of the bed as a box in the room. For indoor settings it
has even been attempted to recover physical support relations, based on RGB-D data
(Silberman et al., 2012). For fairly generic outdoor scenes, physical support, volumetric
constraints and occlusions have also been included, still using boxes as object models
(Gupta et al., 2010). It has also been observed that object detections carry information
about 3D surface orientations, such that they can be jointly estimated even from a single
image (Hoiem et al., 2008).

All the works indicate that even coarse 3D reasoning allows one to better guess the
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(pseudo-)3D layout of a scene, while at the same time improving 2D recognition.
Together with the above-mentioned strength of fine-grained shape models when it comes
to occlusion and viewpoint, this is in our view a compelling reason to add 3D contextual
constraints also to those fine-grained models.

Quantitative scene representations. A different type of methods also includes scene-
level reasoning, but is tailored to specific applications and is more quantitative in nature.
Most works in this direction target autonomous navigation, hence precise localization of
reachable spaces and obstacles is important. Recent works for the autonomous driving
scenario include: (Ess et al., 2009), in which multi-pedestrian tracking is done in 3D based
on stereo video, and (Geiger et al., 2011; Wojek et al., 2013), both aiming for advanced
scene understanding including multi-class object detection, 3D interaction modeling, as
well as semantic labeling of the image content, from monocular input. Viewpoint estimates
from semantic recognition can also be combined with interest point detection to improve
camera pose and scene geometry even across wide baselines (Bao and Savarese, 2011).
For indoor settings, a few recent papers also employ detailed object representations to
support scene understanding (Del Pero et al., 2013), try to exploit frequently co-occurring
object poses (Choi et al., 2013), and even supplement geometry and appearance con-
straints with affordances to better infer scene layout (Zhao and Zhu, 2013).

5.4 3D Object Model

We commence by introducing the fine-grained 3D object model that lies at the core of
our approach. Its extension to entire multi-object scenes will be discussed in Section 5.5.
By modeling an object class at the fine level of detail of individual wireframe vertices the
object model provides the basis for reasoning about object extent and occlusion relations
with high fidelity. To that end, we lift the pseudo-3D object model that we developed in Zia
et al. (2013) to metric 3D space, and combine it with the explicit representation of likely
occlusion patterns from Zia et al. (2013). Our object representation then comprises a
model of global object geometry (Section 5.4.1), local part appearance (Section 5.4.2),
and an explicit representation of occlusion patterns (Section 5.4.3). Additionally, the object
representation also includes a grouping of local parts into semi-local part configurations
(Section 5.4.4), which will be used to initialize the model during inference (Section 5.5.3).
We depict the 3D object representation in Figure 5.2.

5.4.1 Global Object Geometry

We represent an object class as a deformable 3D wireframe, as in the classical “active
shape model" formulation (Cootes et al., 1995). The vertices of the wireframe are defined
manually, and wireframe exemplars are collected by annotating a set of 3D CAD models
(i.e. , selecting corresponding vertices from their triangle meshes). Principal Component
Analysis (PCA) is applied to obtain the mean configuration of vertices in 3D as well as
the principal modes of their relative displacement. The final geometric object model then
consists of the mean wireframe µ plus the m principal component directions pj and cor-
responding standard deviations σj, where 1 ≤ j ≤ m. Any 3D wireframe X can thus be
represented, up to some residual ε, as a linear combination of r principal components
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Figure 5.2: 3D Object Model.

with geometry parameters s, where sk is the weight of the kth principal component:

X(s) = µ+
r∑

k=1

skσkpk + ε (5.1)

Unlike the earlier Zia et al. (2013), the 3D CAD models are scaled according to their
real world metric dimensions. 1The resulting metric PCA model hence encodes physically
meaningful scale information in world units, that allow one to assign absolute 3D positions
to object hypotheses (given known camera intrinsics).

5.4.2 Local Part Appearance
We establish the connection between the 3D geometric object model (Section 5.4.1)
and an image by means of a set of parts, one for each wireframe vertex. For each
part, a multi-view appearance model is learned, by generating from training patches
with non-photorealistic rendering of 3D CAD models from a large number of different
viewpoints (Stark et al., 2010), and training a sliding-window detector on these patches.

Specifically, we encode patches around the projected locations of the annotated parts
(≈10% in size of the full object width) as dense shape context features (Belongie et al.,

1While in the earlier work they were scaled to the same size, so as to keep the deformations from the
mean shape small.
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2000). We learn a multi-class Random Forest classifier where each class represents the
multi-view appearance of a particular part. We also dedicate a class trained on back-
ground patches, combining random real image patches with rendered non-part patches
to avoid classifier bias. Using synthetic renderings for training allows us to densely sam-
ple the relevant portion of the viewing sphere with minimal annotation effort (one time
labeling of part locations on 3D CAD models, i.e. no added effort in creating the shape
model).

5.4.3 Explicit Occluder Representation
The 3D wireframe model allows one to represent partial occlusion at the level of
individual parts: each part has an associated binary variable that stores whether the
part is visible or occluded. Note that, in theory, this results in a exponential number of
possible combinations of occluded and unoccluded parts, hindering efficient inference
over occlusion states. We therefore take advantage of the fact that partial occlusion is
not entirely random, but tends to follow re-occurring patterns that render certain joint
occlusion states of multiple parts more likely than others (Pepik et al., 2013): the joint
occlusion state depends on the shape of the occluding physical object(s).

Here we approximate the shapes of (hypothetical) occluders as a finite set of occlusion
masks, following (Kwak et al., 2011; Zia et al., 2013). This set of masks constitutes a
(hard) non-parameteric prior over possible occlusion patterns. The set is denoted by {ai},
and for convenience we denote the empty mask which leaves the object fully visible by
a0. We sample the set of occlusion masks regularly from a generative model, by sliding
multiple boxes across the mask in small spatial increments (the parameters of those
boxes are determined empirically). Figure 5.3(b) shows a few out of the total 288 masks
in our set, with the blue region representing the occluded portion of the object (car).
The collection is able to capture different modes of occlusion, for example truncation
by the image border (Figure 5.8(d), first row), occlusion in the middle by a post or tree
(Figure 5.8(d), 2nd row), or occlusion of only the lower parts from one side (Figure 5.8(d),
third row).

Note that the occlusion mask representation is independent of the cause of occlusion, and
allows to uniformly treat occlusions that arise from (i) self occlusion (a part is occluded
by a wireframe face of the same object), (ii) occlusion by another object that is part of the
same scene hypothesis (a part is occluded by a wireframe face of another object), (iii)
occlusion by an unknown source (a part is occluded by an object that is not part of the
same scene hypothesis, or image evidence is missing).

5.4.4 Semi-Local Part Configurations
In the context of people detection and pose estimation, it has been realized that individual
body parts are hard to accurately localize, because they are small and often not discrimi-
native enough in isolation (Bourdev and Malik, 2009). Instead, it has proved beneficial to
train detectors that span multiple parts appearing in certain poses (termed “poselets”),
seen from a certain viewpoint, and selecting the ones that exhibit high discriminative
power against background on a validation set. In line with these findings, we introduce
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Figure 5.3: (a) Individual training examples for a few part configurations, (b) example
occlusion masks.

the notion of part configurations, i.e. semi-local arrangements of a number of parts,
seen from a specific viewpoint, that are adjacent (in terms of wireframe topology). Some
examples are depicted in Figure 5.3(a)). These configurations provide more reliable
evidence for each of the constituent parts than individual detectors. We use detectors for
different configurations to find promising 2D bounding boxes and viewpoint estimates, as
initializations for fitting the fine-grained 3D object models.

Specifically, we define certain configurations of adjacent parts, with different degrees
of occlusion. Some configurations cover the full car, whereas others only span a part
of it (down to ≈ 20% of the full object). We then train a bank of single component DPM
detectors, one for each configuration, in order to ensure high recall and a large number of
object hypotheses to choose from. At test time, activations of these detectors are merged
together through agglomerative clustering to form full object hypothesis, in the spirit of
the poselet framework (Bourdev and Malik, 2009). For training, we utilize a set of images
labeled at the level of individual parts, and with viewpoint labels from a small discrete set
(in our experiments 8 equally spaced viewpoints). All the objects in these images are fully
visible. Thus, we can store the relative scale and bounding box center offsets, w.r.t. the
full object bounding box, for the part-configuration examples. When detecting potentially
occluded objects in a test image, the activations of all configuration detectors predict a
full object bounding box and a (discrete) pose.

Next we recursively merge nearby (in x, y, scale) activations that have the same viewpoint.
Merging is accomplished by averaging the predicted full object bounding box corners,
and assigning it the highest of the detection scores. After this agglomerative clustering
has terminated all clusters above a fixed detection score are picked as legitimate objects.
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Figure 5.4: 3D Scene Model.

Thus we obtain full object bounding box predictions (even for partially visible objects),
along with an approximate viewpoint.

5.5 3D Scene Model

We proceed by extending the single object model of Section 5.4 to entire scenes, where
we can jointly reason about multiple objects and their geometric relations, placing them
on a common ground plane and taking into account mutual occlusions. As we will show in
the experiments (Section 5.6), this joint modeling can lead to significant improvements in
terms of 3D object localization and pose estimation compared to separately modeling in-
dividual objects. It is enabled by a joint scene hypothesis space (Section 5.5.1), governed
by a probabilistic formulation that scores hypotheses according to their likelihood (Sec-
tion 5.5.2), and an efficient approximate inference procedure for finding plausible scenes
(Section 5.5.3). The scene model is schematically depicted in Figure 5.4.

5.5.1 Hypothesis Space

Our 3D scene model comprises a common ground plane and a set of 3D deformable
wireframes with corresponding occlusion masks (Section 5.4). Note that this hypothesis
space is more expressive than the 2.5 D representations used by previous work (Ess
et al., 2009; Meger et al., 2011; Wojek et al., 2013), as it allows reasoning about locations,
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shapes, and interactions of objects, at the level of individual 3D wireframe vertices and
faces.

Common ground plane. In the full system, we constrain all the object instances to
lie on a common ground plane, as often done for street scenes. This assumption
usually holds and drastically reduces the search space for possible object locations
(2 degrees of freedom for translation and 1 for rotation, instead of 3 + 3). Moreover,
the consensus for a common ground plane stabilizes 3D object localization. We
parametrize the ground plane with the pitch and roll angles relative to the camera frame,
θgp = (θpitch, θroll). The height qy of the camera above ground is assumed known and fixed.

Object instances. Each object in the scene is an instance of the 3D wireframe model
described in Section 5.4.1. An individual instance hβ = (q, s, a) comprises 2D translation
and azimuth q = (qx, qz, qaz) relative to the ground plane, shape parameters s, and an
occlusion mask a.

Explicit occlusion model. As detailed in Section 5.4.3, we represent occlusions on an
object instance by selecting an occluder mask out of a pre-defined set {ai}, which in
turn determines the binary occlusion state of all parts. That is, the occlusion state of
part j is given by an indicator function oj(θgp, qaz, s, a), with θgp the ground plane param-
eters, qaz the object azimuth, s the object shape, and a the occlusion mask. Since all
object hypotheses reside in the same 3D coordinate system, mutual occlusions can be
derived deterministically from their depth ordering (Figure 5.4): we cast rays from the
camera center to each wireframe vertex of all other objects, and record intersections
with faces of any other object as an appropriate occlusion mask. Accordingly, we write
Γ
(
{h1,h2, . . . ,hn}\hβ,hβ,θgp

)
, i.e. the operator Γ returns the index of the occlusion mask

for hβ as a function of the other objects in a given scene estimate.

5.5.2 Probabilistic Formulation
All evidence in our model comes from object part detection, and the prior for allowable
occlusions is given by per-object occlusion masks and relative object positions (Sec-
tion 5.5.1).

Object likelihood. The likelihood of an object being present at a particular location in the
scene is measured by responses of a bank of (viewpoint-independent) sliding-window
part detectors (Section 5.4.2), evaluated at projected image coordinates of the corre-
sponding 3D wireframe vertices.2 The likelihood L(hβ,θgp) for an object hβ standing on
the ground plane θgp is the sum over the responses of all visible parts, with a constant
likelihood for occluded parts:

L(hβ,θgp)=max
ς

[ ∑m
j=1

(
Lv + Lo

)∑m
j=1 oj(θgp, qaz, s, a0)

]
. (5.2)

The denominator normalizes for the varying number of self-occluded parts at different
viewpoints. Lv is the evidence (pseudo log-likelihood) Sj(ς,xj) for part j if it is visible,

2In practice this amounts to a look-up in the precomputed response maps.
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found by looking up the detection score at image location xj and scale ς, normalized with
the background score Sb(ς,xj) as in (Villamizar et al., 2011). Lo assigns a fixed likelihood
c to an occluded part:

Lv = oj(θgp, qaz, s, a) log
Sj(ς,xj)

Sb(ς,xj)
, (5.3)

Lo =
(
oj(θgp, qaz, s, a0)− oj(θgp, qaz, s, a)

)
c . (5.4)

Scene-level likelihood. To score an entire scene we combine object hypotheses and
ground plane into a scene hypothesis ψ = {qy,θgp,h1, ...,hn}. The likelihood of a com-
plete scene is then the sum over all object likelihoods, such that the objective for scene
interpretation becomes:

ψ̂ = arg maxψ

[
n∑
β=1

L(hβ,θgp)

]
. (5.5)

Note, the domain Dom
(
L
(
hβ,θgp)

)
must be limited such that the occluder mask aβ of

an object hypothesis hβ is dependent on relative poses of all the objects in the scene:
an object hypothesis hβ can only be assigned occlusion masks ai which respect object-
object occlusions—i.e. at least all the vertices covered by Γ

(
{h1,h2, . . . ,hn}\hβ,hβ,θgp)

)
must be covered, even if a different mask would give a higher objective value. Also note
that the ground plane in our current implementation is a hard constraint—objects off the
ground are impossible in our parameterization (except for experiments in which we “turn
off" the ground plane for comparison).

5.5.3 Inference
The objective function in Eqn. 5.5 is high-dimensional, highly non-convex, and not
smooth (due to the binary occlusion states). Note that deterministic occlusion reasoning
potentially introduces dependencies between all pairs of objects, and the common
ground plane effectively ties all other variables to the ground plane parameters θgp. In
order to still do approximate inference and reach strong local maxima of the likelihood
function, we have designed an inference scheme that proceeds in stages, lifting an
initial 2D guess (Initialization) about object locations to a coarse 3D model (Coarse 3D
Geometry ), and refining that coarse model into a final collection of consistent 3D shapes
(Final scene-level inference, Occlusion Reasoning).

Initialization. We initialize the inference from coarse 2D bounding box pre-detections and
corresponding discrete viewpoint estimates (Section 5.4.4), keeping all pre-detections
above a confidence threshold. Note that this implicitly determines the maximum number
of objects that will be considered in the scene hypothesis under consideration.

Coarse 3D geometry. Since we reason in a fixed, camera-centered 3D coordinate
frame, the initial detections can be directly lifted to 3D space, by casting rays through 2D
bounding box centers and instantiating objects on these rays, such that their reprojections
are consistent with the 2D boxes and discrete viewpoint estimates, and reside on a
common ground plane. In order to avoid discretization artifacts, we then refine the lifted
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object boxes by imputing the mean object shape and performing a grid search over
ground plane parameters and object translation and rotation (azimuth). In this step, rather
than commiting to a single scene-level hypothesis, we retain many candidate hypotheses
(scene particles) that are consistent with the 2D bounding boxes and viewpoints of the
pre-detections within some tolerance.

Occlusion reasoning. We combine two different methods to select an appropriate
occlusion mask for a given object, (i) deterministic occlusion reasoning, and (ii) occlusion
reasoning based on (the absence of) part evidence.

(i) Since by construction we recover the 3D locations and shapes of multiple objects in a
common frame, we can calculate whether a certain object instance is occluded by any
other modeled object instance in our scene. This is calculated efficiently by casting rays
to all (not self-occluded) vertices of the object instance, and checking if a ray intersects
any other object in its path before reaching the vertex. This deterministically tells us
which parts of the object instance are occluded by another modeled object in the scene,
allowing us to choose an occluder mask that best represents the occlusion (overlaps the
occluded parts). To select the best mask we search through the entire set of occluders to
maximize the number of parts with the correct occlusion label, with greater weight on the
occluded parts (in the experiments, twice as much as for visible parts).

(ii) For parts not under deterministic occlusion, we look for missing image evidence (low
part detection scores for multiple adjacent parts), guided by the set of occluder masks.
Specifically, for a particular wireframe hypothesis, we search through the set of occluder
masks to maximize the summed part detection scores (obtained from the Random Forest
classifier, Section 5.4.2), replacing the scores for parts behind the occluder by a constant
(low) score c. Especially in this step, leveraging local context in the form of occlusion
masks stabilizes individual part-level occlusion estimates, which by themselves are rather
unreliable because of the noisy evidence.

Final scene-level inference. Finally, we search a good local optimum of the scene
objective function (Eqn. 5.5) using an iterative stochastic optimization scheme shown in
Algorithm 3. The procedure is based on block coordinate descent to decouple shape and
viewpoint variables, combined with ideas from smoothing-based optimization (Leordeanu
and Hebert, 2008). As the space of ground planes is already well-covered by the set of
multiple scene particles (in our experiments 250), we keep the ground plane parameters
of each particle constant. This stabilizes the optimization.

Each particle is iteratively refined in two steps: first, the shape and viewpoint parameters
of all objects are updated, by testing many random perturbations around the current val-
ues and keeping the best one. The random perturbations follow a normal distribution that
is adapted in a data-driven fashion (Leordeanu and Hebert, 2008). Then, object occlu-
sions are recomputed and occlusions by unmodeled objects are updated, by exhaustive
search over the set of possible masks. For each scene particle these two update steps
are iterated, and the particle with the highest objective value ψ forms our MAP estimate.
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Given: Scene particle ψ′: initial objects hβ = (qβ, sβ, aβ),
β = 1 . . . n; fixed θgp; aβ = a0 (all objects fully visible)
for fixed number of iterations do

1. for β = 1 . . . n do
draw samples {qβj , s

β
j }j=1..m from a Gaussian

N (qβ, sβ; Σβ) centered at current values;
update hβ = argmaxj L

(
hβ(qβj , s

β
j , a

β),θgp
)

end
2. for β = 1 . . . n do

update occlusion mask (exhaustive search)
aβ = argmaxj L

(
hβ(qβ, sβ, aj),θgp

)
end
3. Recompute sampling variance Σβ of Gaussians (Leordeanu and Hebert,
2008)

end
Algorithm 3: Inference run for each scene particle.

5.6 Experiments

In this section, we extensively analyze the performance of our fine-grained 3D scene
model, focusing on its ability to derive 3D estimates from a single input image (with
known camera intrinsics). To that end, we evaluate object localization in 3D metric space
(Section 5.6.4) as well as 3D pose estimation (Section 5.6.4) on the challenging KITTI
dataset (Geiger et al., 2012) of street scenes. In addition, we analyze the performance of
our model w.r.t. part-level occlusion prediction and part localization in the 2D image plane
(Section 5.6.5). In all experiments, we compare the performance of our full model with
stripped-down variants as well as appropriate baselines, to highlight the contributions of
different system components to overall performance.

5.6.1 Dataset
In order to evaluate our approach for 3D layout estimation from a single view, we
require a dataset with 3D annotations. We thus turn to the KITTI 3D object detection
and orientation estimation benchmark dataset (Geiger et al., 2012) as a testbed for our
approach, since it provides challenging images of realistic street scenes with varying
levels of occlusion and clutter, but nevertheless controlled enough conditions for thorough
evaluations. It consists of around 7, 500 training and 7, 500 test images of street scenes
captured from a moving vehicle and comes with labeled 2D and 3D object bounding
boxes and viewpoints (generated with the help of a laser scanner).

Test set. Since annotations are only made publicly available on the training set of KITTI,
we utilize a portion of this training set for our evaluation. We choose only images with
multiple cars that are large enough to identify parts, and manually annotate all cars in
this subset with 2D part locations and part-level occlusion labels. Specifically, we pick
every 5th image from the training set with at least two cars with height greater than 75
pixels. This gives us 260 test images with 982 cars in total, of which 672 are partially
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occluded, and 476 are severely occluded. Our selection shall ensure that while being
biased towards more complex scenes, we still sample a representative portion of the
dataset.

Training set. We use two different kinds of data for training our model, (i) synthetic data
in the form of rendered CAD models, and (ii) real-world training data. (i) We utilize 38
commercially available 3D CAD models of cars for learning the object wireframe model
as well as for learning viewpoint-invariant part appearances, (c.f. Zia et al., 2013). Specif-
ically, we render the 3D CAD models from 72 different azimuth angles (5◦ steps) and 2
elevation angles (7.5◦ and 15◦ above the ground), densely covering the relevant part of
the viewing sphere, using the non-photorealistic style of Stark et al. (2010). Rendered
part patches serve as positive part examples, randomly sampled image patches as well
as non-part samples from the renderings serve as negative background examples to train
the multi-class Random Forest classifier. The classifier distinguishes 37 classes (36 parts
and 1 background class), using 30 trees with a maximum depth of 13. The total number
of training patches is 162, 000, split into 92, 000 part and 70, 000 background patches. (ii)
We train 118 part configuration detectors (single component DPMs) labeled with discrete
viewpoint, 2D part locations and part-level occlusion labels on a set of 1, 000 car images
downloaded from the internet and 150 images from the KITTI dataset (none of which are
part of the test set). In order to model the occlusions, we semi-automatically define a set
of 288 occluder masks, the same as in Zia et al. (2013).

5.6.2 Object Pre-Detection
As a sanity check, we first verify that our 2D pre-detection (Section 5.4.4) matches
the state-of-the-art. To that end we evaluate a standard 2D bounding box detection
task according to the PASCAL VOC criterion (> 50% intersection-over-union between
predicted and ground truth bounding boxes). As normally done we restrict the evaluation
to objects of a certain minimum size and visibility. Specifically, we only consider cars
> 50 pixels in height which are at least 20% visible. The minimum size is slightly stricter
than the 40 pixels that Geiger et al. (2012) use for the dataset (since we need to ensure
enough support for the part detectors), whereas the occlusion threshold is much more
lenient than their 80% (since we are specifically interested in occluded objects).

Results. We compare our bank of single component DPM detectors to the original de-
formable part model (Felzenszwalb et al., 2010), both trained on the same training set
(Section 5.6.1). Precision-recall curves are shown in Figure 5.6. We observe that our de-
tector bank (green curve, 57.8% AP) in fact performs slightly better than the original DPM
(red curve, 57.3% AP). In addition, it delivers coarse viewpoint estimates and rough part
locations that we can leverage for initializing our scene-level inference (Section 5.5.3).

5.6.3 Model Variants and Baselines
We compare the performance of our full system with a number of stripped down variants
in order to quantify the benefit that we get from each individual component. We consider
the following variants:
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full dataset occ >0 parts occ >3 parts
<1m <1.5m <1m <1.5m <1m <1.5m

Figure 5.5 plot (a) (b) (c) (d)
(i) fg 23% 35% 22% 31% 23% 32%
(ii) fg+so 26% 37% 23% 33% 27% 36%
(iii) fg+do 25% 37% 26% 35% 27% 38%
(iv) fg+gp 40% 53% 40% 52% 38% 49%
(v) fg+gp+do+so 44% 56% 44% 55% 43% 60%
(vi) Zia et al. (2013) — — — — — —
(vii) coarse 21% 37% 21% 40% 20% 42%
(viii) coarse+gp 35% 54% 28% 48% 27% 47%

Table 5.1: 3D localization accuracy: percentage of cars correctly localized within 1 and
1.5 meters of ground truth.

(i) fg: the basic version of our fine-grained 3D object model, without ground plane,
searched occluder or deterministic occlusion reasoning; this amounts to independent
modeling of the objects in a common, metric 3D scene coordinate system. (ii) fg+so: same
as (i) but with searched occluder to represent occlusions caused by unmodeled scene ele-
ments. (iii) fg+do: same as (i) but with deterministic occlusion reasoning between multiple
objects. (iv) fg+gp: same as (i), but with common ground plane. (v) fg+gp+do+so: same
as (i), but with all three components, common ground plane, searched occluder, and de-
terministic occlusion turned on. (vi) the earlier pseudo-3D shape model (Zia et al., 2013),
with probabilistic occlusion reasoning; this uses essentially the same object model as (ii),
but learns it from examples scaled to the same size rather than the true size, and fits the
model in 2D (x, y, scale)-space rather explicitly recovering a 3D scene interpretation.
We also compare our representation to two different baselines, (vii) coarse: a scene model
consisting of 3D bounding boxes rather than detailed cars, corresponding to the coarse
3D geometry stage of our pipeline (Section 5.5.3); and (viii) coarse+gp: like (vii) but with a
common ground plane for the bounding boxes. Specifically, during the coarse grid search
we choose the 3D bounding box hypothesis whose 2D projection is closest to the corre-
sponding pre-detection 2D bounding box.

5.6.4 3D Evaluation
Having verified that our pre-detection stage is competitive and provides reasonable object
candidates in the image plane, we now move on to the more challenging task of estimating
the 3D location and pose of objects from monocular images (with known camera intrin-
sics). As we will show, the fine-grained representation leads to significant performance
improvements over a standard baseline that considers only 3D bounding boxes, on both
tasks.

3D Object Localization

Protocol. We measure 3D localization performance by the fraction of detected object
centroids that are correctly localized up to deviations of 1, and 1.5 meters. These
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(a) (b)

(c) (d)

Figure 5.5: 3D localization accuracy: percentage of cars correctly localized within 1 (a,c)
and 1.5 (b,d) meters of ground truth, on all (a,b) and occluded (c,d) cars.

thresholds may seem rather strict for the viewing geometry of KITTI, but in our view
larger tolerances make little sense for cars with dimensions ≈ 4.0× 1.6 meters.

In line with existing studies on pose estimation, we base the analysis on true positive
(TP) initializations that meet the PASCAL VOC criterion for 2D bounding box overlap
and whose coarse viewpoint estimates lie within 45◦ of the ground truth, thus excluding
failures of pre-detection. We perform the analysis for three settings (Table 5.1): (i) over
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our full testset (517 of 982 TPs); (ii) only over those cars that are partially occluded, i.e.
1 or more of the parts that are not self-occluded by the object are not visible (234 of 672
TPs); and (iii) only those cars that are severely occluded, i.e. 4 or more parts are not
visible (113 of 476 TPs). Figure 5.5 visualizes selected columns of Table 5.1 as bar plots
to facilitate the comparison.

Results. In Table 5.1 and Fig 5.5, we first observe that our full system (fg+gp+do+so,
dotted dark red) is the top performer for all three occlusion settings and both localization
error thresholds, localizing objects with 1 m accuracy in 43 − 44% of the cases and with
1.5 m accuracy in 55–60% of the cases. Figure 5.8 visualizes some examples of our full
system fg+gp+do+so vs. the stronger baseline coarse+gp.

Second, the basic fine-grained model fg (orange) outperforms coarse (light blue) by 1–3
percent points (pp) corresponding to a relative improvement of 4–13% at 1 m accuracy.
The gains increase by a large margin when adding a ground plane: fg+gp (dark red)
outperforms coarse+gp (dark blue) by 5–12 pp (13–43%) at 1 m accuracy. In other words,
cars are not 3D boxes. Modeling their detailed shape and pose yields better scene
descriptions, with and without ground plane constraint. The results at 1.5 m are less
clear-cut. It appears that from badly localized initializations just inside the 1.5 m radius,
the final inference sometimes drifts into incorrect local minima outside of 1.5 m.

Third, modeling fine-grained occlusions either independently (fg+so, dotted orange) or
deterministically across multiple objects (fg+do, dotted red) brings marked improvements
on top of fg alone. At 1 m they outperform fg by 1–4 pp (2–15%) and by 2–4 pp (7–19%),
respectively. We get similar improvements at 1.5 m, with fg+so and fg+do outperforming
fg by 2–4 pp (4–14%), and 2–6 pp (4–19%) respectively. Not surprisingly, the performance
boost is greater for the occluded cases, and both occlusion reasoning approaches are
in fact beneficial for 3D reasoning. Figure 5.9 visualizes some results with and without
occlusion reasoning.

And last, adding the ground plane always boosts the performance for both the fg
and coarse models, strongly supporting the case for joint 3D scene reasoning: at 1 m
accuracy the gains are 15–18 pp (65–81%) for fg+gp vs. fg, and 7–14 pp (30–67%) for
coarse+gp vs. coarse. Similarly, at 1.5 m accuracy we get 17–21 pp (51–68%) for fg+gp
vs. fg, and 5–17 pp (10–47%) for coarse+gp vs. coarse. for qualitative results see Figure 5.10.

We obtain even richer 3D “reconstructions” by replacing wireframes with nearest neigh-
bors from the database of 3D CAD models (Figure 5.11), accurately recognizing hatch-
backs (a, e, f, i, j, l, u), sedans (b, o) and station wagons (d, p, v, w, x), as well as approxi-
mating the van (c, no example in database) by a station wagon.

Viewpoint Estimation

Beyond 3D location, 3D scene interpretation also requires the viewpoint of every object,
or equivalently its orientation in metric 3D space. Many object classes are elongated,
thus their orientation is valuable at different levels, ranging from low-level tasks such
as detecting occlusions and collisions to high-level ones like enforcing long-range
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full dataset occ >0 parts occ >3 parts
<5◦ <10◦ 3D err 2D err <5◦ <10◦ 3D err 2D err <5◦ <10◦ 3D err 2D err

(i) fg 44% 69% 5◦ 4◦ 41% 65% 6◦ 4◦ 35% 58% 7◦ 5◦

(ii) fg+so 42% 66% 6◦ 4◦ 39% 62% 6◦ 4◦ 33% 53% 8◦ 5◦

(iii) fg+do 45% 68% 5◦ 4◦ 44% 66% 6◦ 4◦ 36% 56% 7◦ 4◦

(iv) fg+gp 41% 63% 6◦ 4◦ 40% 62% 6◦ 4◦ 36% 52% 8◦ 5◦

(v) fg+gp+do+so 44% 65% 6◦ 4◦ 47% 65% 5◦ 3◦ 44% 55% 8◦ 4◦

(vi) Zia et al. (2013) - - - 6◦ - - - 6◦ - - - 6◦

(vii) coarse 16% 38% 13◦ 9◦ 20% 41% 13◦ 6◦ 21% 40% 14◦ 9◦

(viii) coarse+gp 25% 51% 10◦ 6◦ 27% 51% 10◦ 5◦ 23% 40% 14◦ 7◦

Table 5.2: 3D viewpoint estimation accuracy (percentage of objects with less than 5◦ and
10◦ error) and median angular estimation errors (3D and 2D)

Figure 5.6: Object pre-detection performance.

regularities (e.g. cars parked at the roadside are usually parallel).

Protocol. We can evaluate object orientation (azimuth) in 2D image space as well as in
3D scene space. 2D viewpoint is the apparent azimuth of the object as seen in the image.
The actual azimuth relative to a fixed scene direction (called 3D viewpoint), is calculated
from the 2D viewpoint estimate and an estimate of 3D object location. We measure
viewpoint estimation accuracy in two ways: as the percentage of detected objects for
which the 3D angular error is below 5◦ or 10◦, and as the median angular error between
estimated and ground truth azimuth angle over detected objects, both in 3D and 2D.

Results. Table 5.2 shows the quantitative results, again comparing our full model and the
different variants introduced in Section 5.6.3, and distinguishing between the full dataset
and two subsets with different degrees of occlusion. In Figure 5.7 we plot the percentage
of cars whose poses are estimated correctly up to different error thresholds, using the
same color coding as Figure 5.5.

First, we observe that the full system fg+gp+do+so (dotted dark red) outperforms the
best coarse model coarse+gp (dark blue) by significant margins of 19–21 pp and 14–15 pp
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Figure 5.7: Percentage of cars with VP estimation error within x◦.

at 5◦ and 10◦ errors respectively, improving the median angular error by 4◦–6◦.

Second, all fg models (shades of orange and red) deliver quite reliable viewpoint
estimates with smaller differences in performance (≤ 6 pp, or 1◦ median error) for 10◦

error, outperforming their respective coarse counterparts (shades of blue) by significant
margins. Observe the clear grouping of curves in Figure 5.7. However, for the high
accuracy regime (≤ 5◦ error), the full system fg+gp+do+so (dotted dark red) delivers the
best performance for both occluded subsets, beating the next best combination fg+do
(dotted red) by 3 pp and 8 pp, respectively.

Third, the ground plane helps considerably for the coarse models (shades of blue),
improving by 9 pp for ≤5◦ error, and 13 pp for ≤10◦ over the full data set. Understandably,
that gain gradually dissolves with increasing occlusion.

And fourth, we observe that in terms of median 2D viewpoint estimation error, our full
system fg+gp+do+so outperforms the pseudo-3D model of (Zia et al., 2013) by 2◦–3◦,
highlighting the benefit of reasoning in true metric 3D space.

5.6.5 2D Evaluation

While the objective of this work is to enable accurate localization and pose estimation
in 3D (Section 5.6.4), we also present an analysis of 2D performance (part localization
and occlusion prediction in the image plane), to put the work into context. Unfortunately,
a robust measure to quantify how well the wireframe model fits the image data requires
accurate ground truth 2D locations of even the occluded parts, which are not available. A
measure used previously in Zia et al. (2013) is 2D part localization accuracy only evalu-
ated for the visible parts, but we now find it to be biased, because fitting the model to just
the visible parts leads to high accuracies on that measure, even if the overall fit is grossly
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full dataset occ >0 parts occ >3 parts
occlusion No. of cars occlusion No. of cars occlusion No. of cars
prediction with >70% prediction with >70% prediction with >70%
accuracy parts accuracy parts accuracy parts

(i) fg 82% 69% 70% 68% 57% 43%
(ii) fg+so 87% 66% 80% 63% 77% 35%
(iii) fg+do 84% 70% 72% 67% 62% 47%
(iv) fg+gp 82% 68% 68% 67% 57% 46%
(v) fg+gp+do+so 88% 71% 82% 67% 79% 44%
(vi) Zia et al. (2013) 87% 64% 84% 61% 84% 32%
(vii) coarse — — — — — —
(viii) coarse+gp — — — — — —

Table 5.3: 2D accuracy. Part-level occlusion prediction accuracy and percentage of cars
which have >70% parts accurately localized.

incorrect. We thus introduce a more robust measure below.

Protocol. We follow the evaluation protocol commonly applied for human body pose
estimation and evaluate the number of correctly localized parts, using a relative threshold
adjusted to the size of the reprojected car (20 pixels for a car of size 500 × 170 pixels,
i.e. ≈ 4% of the total length (c.f. Zia et al., 2013)). We use this threshold to determine
the percentage of detected cars for which 70% or more of all (not self-occluded) parts
are localized correctly, evaluated on cars for which at least 70% of the (not self-occluded)
parts are visible according to ground truth. We find this measure to be more robust, since
it favours sensible fits of the overall wireframe.

Further, we calculate the percentage of (not self-occluded) parts for which the correct
occlusion label is estimated. For the model variants which do not use the occluder
representation (fg and fg+gp), all candidate parts are predicted as visible.

Results. Table 5.3 shows the results for both 2D part localization and part-level occlusion
estimation. We observe that our full system fg+gp+do+so is the highest performing
variant over the full data set (88% part-level occlusion prediction accuracy and 71% cars
with correct part localization). For the occluded subsets, the full system performs best
among all fg models on occlusion prediction, whereas the results for part localization
are less conclusive. An interesting observation is that methods that use 3D context
(fg+gp+do+so, fg+gp, fg+do) consistently beat (fg+so), i.e. inferring occlusion is more
brittle from (missing) image evidence alone than when supported by 3D scene reasoning.

Comparing the pseudo-3D baseline (Zia et al., 2013) and its proper metric 3D coun-
terpart fg+so, we observe that, indeed, metric 3D improves part localization by 2–3
pp (despite inferior part-level occlusion prediction). In fact, all fg variants outperform
Zia et al. (2013) in part localization by significant margins, notably fg+gp+do+so (6–12 pp).
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On average, we note that there is only a weak (although still positive) correlation between
2D part localization accuracy and 3D localization performance (Section 5.6.4). In other
words, whenever possible 3D reasoning should be evaluated in 3D space, rather than in
the 2D projection.3

5.7 Conclusion

We have approached the 3D scene understanding problem from the perspective of
detailed deformable shape and occlusion modeling, jointly fitting the shapes of multiple
objects linked by a common scene geometry (ground plane). Our results suggest that
detailed representations of object shape are beneficial for 3D scene reasoning, and fit
well with scene-level constraints between objects. By itself, fitting a detailed, deformable
3D model of cars and reasoning about occlusions resulted in improvements of 16–26%
in object localization accuracy (number of cars localized to within 1m in 3D), over a
baseline which just lifts objects’ bounding boxes into the 3D scene. Enforcing a common
ground plane for all 3D bounding boxes improved localization by 30–67%. When both
aspects are combined into a joint model over multiple cars on a common ground plane,
each with its own detailed 3D shape and pose, we get a striking 104–113% improvement
in 3D localization compared to just lifting 2D detections, as well as a reduction of the
median orientation error from 13◦ to 5◦. We also find that the increased accuracy in 3D
scene coordinates is not reflected in improved 2D localization of the shape model’s parts,
supporting our claim that 3D scene understanding should be carried out (and evaluated)
in an explicit 3D representation.

An obvious limitation of the present system, to be addressed in future work, is that it
only includes a single object category, and applies to the simple (albeit important) case of
scenes with a dominant ground plane. In terms of technical approach it woud be desirable
to develop a better and more efficient inference algorithm for the joint scene model. Fi-
nally, the bottleneck where most of the recall is lost is the 2D pre-detection stage. Hence,
either better 2D object detectors are needed, or 3D scene estimation must be extended
to run directly on entire images without initialization, which will require greatly increased
robustness and efficiency.

3Note, there is no 3D counterpart to this part-level evaluation, since we see no way to obtain sufficiently
accurate 3D part annotations.
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Chapter 6

Conclusions and Outlook

Although 3D image interpretation had already been established as an engineering
discipline in the middle of the 19th century studied by photogrammetrists (Schindler
and Förstner, 2013), it was the Artificial Intelligence (AI) community which first started
looking at automatic image interpretation in the 1960s. It took AI researchers many years
before they came to appreciate the extremely challenging nature of the problem, with
Marvin Minsky (one of the fathers of AI) famously claiming computer vision to be, “an
undergraduate summer project” in 1966. Originating from AI, computer vision efforts in
the early days were directed towards understanding the underlying 3D scene captured
by an image. A number of ambitious attempts based on highly expressive models were
made (Roberts, 1963; Binford, 1971; Nevatia and Binford, 1977; Marr and Nishihara,
1978; Brooks, 1981; Lowe, 1987) which proved far ahead of their time, given the ex-
tremely limited computational resources and unavailability of various low-level algorithms
that only came into existence in the following decades. Consequently, computer vision
research dispersed to work on these lower level problems ranging from shape-from-X
to interest point detection and description, leveraging on insights from optics, graphics,
statistics, operations research and differential analysis.

Over the last one and a half decade we have seen successes in a number of sub-
problems: local features (Lowe, 1999; Tuytelaars and Gool, 2000; Belongie et al., 2000),
image segmentation (Shi and Malik, 2000; Felzenszwalb and Huttenlocher, 2004),
approximate inference (Isard and Blake, 1998; Murphy et al., 1999; Boykov et al., 2001),
region labeling (He et al., 2004), multi-class discriminative classification (Breiman,
2001), and template matching (Viola and Jones, 2001; Dalal and Triggs, 2005). This
has enabled researchers to revive the original goals that the community set out to
achieve, that of detailed 3D scene understanding. A number of approaches have been
proposed which coarsely reason about multiple scene components jointly in 3D, such
that the components support each other in obtaining superior performance compared to
independent detections (Geiger et al., 2011; Gupta et al., 2010; Hedau et al., 2010).

In this thesis we have attempted to go one step further and utilize finer-grained 3D models
towards scene-level understanding. By revisiting a detailed 3D geometric model from the
early days in the light of modern developments, we have demonstrated the usefulness of
rich modeling even at the individual object level. Next, we have added the ability to reason
about multiple object instances in a common 3D frame, adding a simple scene represen-

110
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tation and modeling object-object interactions at a high resolution. We estimate a rich and
surprisingly accurate 3D layout from a single view image, highlighting the potential of joint
reasoning on detailed geometric models.

6.1 Discussion of contributions

We have explored both detaild 3D geometric modeling as well as applying such a model
to the task of scene-level reasoning. The contributions resulting from the work thus also
span both these domains.

6.1.1 Contributions to object class modeling

We explore a two layered approach to detailed 3D object class detection in Chapters 3
and 4. The purpose of the first layer is to provide full bounding box level detections
together with coarse viewpoint, as well as being invariant to partial occlusions. The first
layer accumulates votes from viewpoint dependent part configurations, and additionally
leverages the individual configuration activations to predict local part locations. Our
first layer outperforms the 2D detection results of DPM (Felzenszwalb et al., 2010) and
original poselets (Bourdev and Malik, 2009), additionally providing coarse viewpoint
estimates. We consider these results as a solid basis for subsequent 3D inference.

The second stage comprises of a 3D deformable wireframe model complementing early
ideas in computer vision with modern techniques for robust model-to-image matching.
This combination of 3D wireframes with discriminative local shape detectors allows for
accurate estimation of object shape and continuous pose from single input images. In
Chapter 3, we perform an extensive experimental study for 2D part-level localization,
and continuous pose estimation, demonstrating accurate object geometry and viewpoint
estimates on two challenging datasets for two object clases with very different geometry
namely cars and bicycles. We show superior performance to Stark et al. (2010); Zia et al.
(2011); Pepik et al. (2012b) on the task of continuous viewpoint estimation, demonstrating
the value of reasoning about viewpoint in a continuous space. We further beat a naive
baseline for 2D part localization (mean shape model in object bounding box) by a large
margin. Intuitively speaking, these experiments confirm that, also for the purpose of
machine vision, objects like cars or bicycles are not just 2D boxes or instances of a fixed
template.

Finally, we demonstrate novel applications of such detailed shape estimation namely,
ultra-wide baseline matching and fine-grained object categorization. In ultra-wide base-
line matching, correspondences obtained from the detailed shape model outperform (by
a large margin) interest point matching as well as matching independent part detections,
showing that the object model indeed fulfills its job of providing a strong 3D prior model for
object shape. We further beat not only our earlier work Zia et al. (2011) but also the latest
works of Pepik et al. (2012b) and Pepik et al. (2012a), demonstrating the strength of fine-
grained 3D representations. We demonstrate superior estimation of occlusion patterns as
well as 2D part-level localization, as compared to an occlusion-agnostic baseline, high-
lighting the benefit of the simple, yet powerful occluder representation with masks. Overall,
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the results support our hypothesis that detailed 3D geometry and occlusion modeling are
beneficial even for independent object class recognition. We have made all our annotated
training and test data as well as source code publicly available, which is already being
used by other researchers.

6.1.2 Contributions to scene-level reasoning

Having demonstrated a powerful 3D geometric representation for object class instances,
we move ahead to utilize this representation for jointly estimating shapes of multiple
objects linked by a common scene geometry (ground plane) in Chapter 5. We demon-
strate that a representation with occluder masks naturally includes both object-object
occlusions as well as occlusions caused by unmodeled scene elements. It is, in fact, the
detailed geometric hypotheses provided by our object model which enables us to choose
a common ground plane touching the lower-most vertices of the wheels, as well as
reason about object-object occlusions at the level of individual wireframe vertices. This is
in contrast to full object bounding boxes which over-estimate the extent of the object.

We utilize a subset of the KITTI dataset (Geiger et al., 2012) for evaluating the con-
tributions of different aspects of our scene model towards accuracies of: 3D object
localization, 3D pose estimation, and 2D wireframe fitting and occlusion estimation.
The evaluations are performed for three different settings corresponding to: the full
dataset, only occluded objects, and only severely occluded objects. We demonstrate
that both aspects of our model consistently improve 3D localization accuracy, with our
full system giving the best performance across board. Similarly, we obtain the best
performance for viewpoint estimation in the high accuracy regime with our full system.
In fact, combining both aspects (occlusion modeling and common ground plane) gives
us a striking 104–113% improvement in 3D localization as compared to just lifting 2D
detections to 3D, as well as a reduction of the median orientation error from 13◦ to 5◦.
These improvements strongly support the case for 3D scene-level reasoning utilizing
detailed models of object shape.

In terms of 2D localization accuracy the results are less clear cut. While true 3D reasoning
does give minor improvements, the correlation is relatively weak. The lesson here is that
the 3D reasoning should be evaluated in 3D space rather than in 2D projection. We will
make the source code for scene-level reasoning available, too.

6.2 Technical evolution over the thesis

This thesis represents one coherent four year long project completed by sequentially
reaching three milestones corresponding to the three core chapters (Chapters 3, 4, and
5). However, there has been a steady evolution in the sub-components of the overall
system over the course of the project. Although the core chapters already specify these
differences, we explicitly point them out in the following.
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6.2.1 Initial detections

In Chapter 3, we initialize our inference using 2D detections from DPM-VOC-VP (Pepik
et al., 2012b). This detector provides us with coarse 2D bounding box level hypotheses
together with object pose discretized into eight bins. However, in order to cope with partial
occlusions, we replace this detector with a bank of part-configuration detectors in Chap-
ters 4 and 5. Besides obtaining full-object bounding box detections and coarse pose, this
enables us to obtain additional evidence for local parts from the individual configuration
activations in Chapter 4.

6.2.2 Changes in inference procedure

In Chapter 3, all variables in our search space are continuous and thus for each object
hypothesis we are able to draw samples from a Gaussian proposal distribution centered
on the previous value of the hypothesis. As we add an explicit occluder model in
Chapter 4, the search space per object increases by a discrete variable (mask index)
whose realizations have no obvious ordering. We achieve this ordering by defining a
neighborhood between masks based on a rank order w.r.t. Hamming distance. Specifi-
cally we sort the set of masks w.r.t. the Hamming distance from the previous hypothesis,
and then sample the offset in this ordering from a Gaussian.

We further need to modify the inference in Chapter 5, because our scene-level reasoning
requires multiple objects to be modeled jointly, causing the number of search dimensions
to increase many times. In order to deal with the resulting exponential increase in search
space, we decouple the estimation of different objects by performing search for object
shape and pose and search for occluder in alternating steps. This block-coordinate de-
scent style inference additionally allows one to search exhaustively for the occluder mask
indices instead of drawing random samples as in the earlier stages of the work.

6.2.3 From pseudo-3D to true 3D

In Chapters 3 and 4, we fit projections of our detailed 3D object model inside 2D bounding
boxes predicted by the coarse detection layer. However, in Chapter 5 we lift our represen-
tation to metric 3D, to enable modeling of interactions between multiple object hypotheses
in a common 3D frame. This is achieved by training the geometric model on 3D CAD data
scaled according to real-world dimensions rather than normalized dimensions (which are
enough for fitting in 2D scale), and then performing a 2D-to-3D lifting in an intermediate
layer (between first and second layer) based on a grid-search for 3D object pose and
ground plane parameters.

6.2.4 Part location prediction from first layer

In Chapter 4, we utilize the activations of part configuration detectors to predict part
locations. The predictions are incorporated as an additional term in the objective function,
based on Gaussians learnt on 2D distributions of relative part locations from the training
data. We demonstrated superior 2D part localization results using this feature of our
model as compared to when it was disabled. The performance boost was moderate, but
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clearly greater for heavily occluded cases.

In Chapter 5 when evaluating over the KITTI dataset (Geiger et al., 2012) we observed
a slight loss in 2D localization performance over the full dataset, when using this addi-
tional cue (but no difference in 3D performance). We explain this discrepancy as follows:
in the case of occlusions where some part patches might be partially occluded caus-
ing inaccurate responses from the part detectors for those windows, incorporating larger
context helps improve the part location estimates. However for fully visible objects, such
predictions can actually mislead the wireframe model causing a worse fit. This happens
because the predictions for part locations from larger partial object (part configuration)
detectors are less precise than those from the part detectors themselves. Thus, over the
full dataset of Chapter 5, which has twice as many fully visible cars as occluded ones, we
get an overall slight loss of performance. Since, the focus there is on 3D scene analysis,
we disable and omit mention of this cue altogether.

6.3 Limitations of our approach

This thesis has succeeded in making relevant contributions to detailed 3D geometric
modeling and scene-level reasoning, but of course there is room for improvement. The
following point out some limitations of the current work.

Improvement in 2D detections. One key limitation of the approach is that it does not
lead to improvement in terms of 2D detections, in fact, we consistenly lose a couple of
detections in all our experiments. Intuitively, finer-grained reasoning about object parts
and contextual reasoning should lead to overall improved bounding box level detections,
however surprisingly neither this thesis nor other 3D geometric modeling approaches
have as yet (Pepik et al., 2012b; Xiang and Savarese, 2013) succeeded in beating the
performance of relatively coarse models.

Object classes considered. Although the approach can, in principle, model any rigid
object class with a well-defined topology, we experimentally evaluate only two classes
with very different geometry: cars and bicycles in Chapter 3 and only cars in Chapters
4 and 5. One reason is the unavailability of suitable datasets, specially a test set with
scenes comprising of multiple objects with 3D annotations. However, experimenting with
more object classes can yield valuable insights in developing scene-level reasoning for
more general scene types.

Non-rigid objects. Our object model itself is limited to modeling topologically consistent
rigid object classes and cannot handle articulated objects (e.g. , humans), objects with
fairly weak global shape (e.g. cats and trees), and functional object categories (e.g.
chairs). We expect a more sophisticated 3D scene-level reasoning system to contain
multiple types of object models which can accomodate such non-rigid object classes.

Single supporting plane. Our single ground plane assumption while being very helpful
for the scenes where it physically holds, can be restrictive at times. We go around this
limitation in our current implementation, by switching off the ground plane for cases
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where our intermediate layer cannot find a single plane hypotheses over which all
the detected objects lie within reasonable tolerance. However, a more sophisticated
approach which allows multiple planes or more general surfaces perhaps aided by ob-
ject detections as well as low-level cues, could be applicable to a broader range of scenes.

Early commitment to hypotheses. Currently we choose all object detections scoring
above a threshold in our first layer, and refine this set of detections in the second layer.
A more robust approach would be to not commit to a fixed set of hypotheses in the first
layer, and allow for addition and deletion of hypotheses based on the 3D reasoning.

Processing speed. Another issue with the current implementation are the long times
need by the inference scheme to converge, which for some images with multiple object
instances can take as much as 30-40 minutes per image. Unfortunately this is a well-
known problem with simulation-based approaches, e.g. even the latest 3D face model
fitting algorithms (Schönborn et al., 2013) require similar amounts of processing time.

6.4 Outlook

In this section, we mention potential solutions for overcoming the limitations discussed
above. Further we discuss proposals for future research both w.r.t. technical features and
broader implications of successful fine-grained 3D modeling.

6.4.1 Detailed 3D object modeling

Since we want to get accurate part-level fits as opposed to just 2D bounding boxes,
even in cluttered scenes and under significant lighting variations, a relevant direction for
further investigation to improve the object models would be to incorporate cues which
can pull the wireframe model towards object boundaries. While this concerns making the
appearance model more sophisticated, another important future direction is to explore
detailed 3D models which may be relevant for more non-rigid, articulated, and functional
object classes.

Perceptual grouping. A powerful cue for separating an object instance from background
clutter useful for some object classes such as cars is segmenting out the object from
the background. This can be based on an actual foreground-background segmentation
algorithm (Parkhi et al., 2011) or leveraging on self-similarity (Deselaers and Ferrari,
2010). Such cues can be utilized best in a model-driven framework, e.g. to neglect trans-
parent windows vs. car body for the segmentation. Interaction of top-down reasoning
with bottom-up processes of segmenting out object regions may be boot-strapped from
an initial detection and then iteratively refined.

Boundary and edge features. Explicitly fitting to edge pixels on the object boundaries
as well as inside the object can also serve as a valuable cue for precise estimation
of the deformable wireframe (Schindler and Suter, 2008; Zia et al., 2009; Payet and
Todorovic, 2011). The challenge is to reject spurious edges due to background clutter
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and to optimally weigh between utilization of complementary features (Stark et al., 2009).

Part regressors and structured output learning. We can achieve better 3D wireframe
fits and potentially speed up the inference by making better use of the training data.
One potential approach is to replace part appearance classifiers with regressors which
can predict the pixel offset to correct part location given a nearby patch (Cristinacce
and Cootes, 2007). An orthogonal approach is to use structured output learning
approaches (Tsochantaridis et al., 2004; Blaschko and Lampert, 2008; Pepik et al.,
2012a), learning object localization, viewpoint, and even 3D object shape and occlusion
parameters jointly. Both these directions not only learn a classifier to distinguish between
perfectly localized object or part windows vs. background windows, but also utilize
partially overlapping windows on training data to improve detection accuracy.

General object geometry. As mentioned in Section 6.3, one important limitation of our
object representation is that it can only model rigid object classes with a well-defined
topology. An important research direction would be to enhance the representation to also
handle articulations (Sigal and Black, 2006) and possibly non-rigid but topologically con-
sistent object classes (Cashman and Fitzgibbon, 2013): estimating pose and shape for
the visible portion of an object instance, as well as a distribution on plausible pose and
shape hypotheses for the occluded portion. Another important question is how point-
based shape analysis can be extended to learn prior shape models for object classes
which do not possess a topologically consistent membership, e.g. buildings as viewed in
aerial photographs. Efforts in this direction could enable the approach developed in this
thesis to be applied to visual analysis problems in other domains such as remote sensing
and medical image interpretation.

6.4.2 Scene-level reasoning
For scene-level reasoning, we propose to incorporate further priors that describe high-
level interactions among object instances, to model more scene elements, and to make
the inference more robust and efficient. We mention some ideas along these lines in the
following:

High-level object interaction priors. Although we inject some prior knowledge in
the form of object-object occlusions and a common ground plane assumption into our
scene model, there are many other high-level constraints which could be leveraged
on. For example, in our current setting of street scene analysis, we can further enforce
long-range regularities, since cars parked at the roadside as well as those on the road
are usually parallel. Similarly in the case of indoor scenes, we can bias our inference
towards commonly occurring configurations of objects, such as computers over office
desks, or chairs under dining tables.

Modeling other scene elements. Currently, we only detect object instances and reason
about their interactions. However we can additionally model other scene elements, such
as building façades, poles, trees, street surface, and incorporate these detections into
our scene-level reasoning. This would constrain the search space, as well as provide
stronger 3D priors on object locations.
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Multiple supporting planes. As a single ground plane is currently a limitation of our
system, an obvious extension is to pursue modeling more general terrains while retaining
the benefits in terms of 3D localization accuracy. The first obvious attempt to achieve this
would be to use more than one planar segment, incorporating low-level image features
apart from object-level votes and trying a statistical model selection scheme to find the
number of planes appropriate for a given scene. Similarly for indoor scenes, fitting planar
segments to supporting surfaces such as table-tops could yield improved estimates.
We foresee the inference algorithm generating these sophisticated scene hypotheses to
follow an iterative approach, refining object hypotheses lying on these planes alternately
with the supporting planes themselves (Hedau et al., 2009) - thus improving both types
of estimates.

Delayed commitment to hypotheses. As mentioned in Section 6.3, our approach
currently commits itself to a fixed set of object hypotheses from the first layer (2D
detections) based on a threshold on detection scores. A more principled approach would
be to give more 2D hypotheses a chance to be evaluated in 3D space, and decide
on the suitability of hypotheses after detailed reasoning: whether to keep or delete the
hypothesis. A sampling framework which provides such capabilities is the Reversible
Jump Markov Chain Monte Carlo (RJMCMC) approach (Green, 1995): which allows
adding, switching, and deleting hypotheses and has been successfully applied in a
number of recent scene-level reasoning works (Wojek et al., 2013; Xiang and Savarese,
2013; Del Pero et al., 2013).

Processing speed. The large amount of time required to process each test image
would be a major hurdle in widespread adoption of detailed 3D scene understanding,
as proposed here. While during this thesis we focus on evaluating the potential of such
fine-grained reasoning, there are clear hints which can be followed vis-à-vis improvement
in efficiency. Our inference approach maintains a set of scene-level hypotheses called
particles which are refined independent of each other over a number of iterations. The
particle updates can be trivially parallelized given a suitable computational platform.
Further, our inference procedure computes sampling variances on the fly (Leordeanu
and Hebert, 2008), which can cause the sampler to draw the same samples many
times. Thus implementing an efficient data structure where we store the objective values
for each already visited point in the search space, to avoid re-evaluating the objective
function for the same hypothesis later, can yield further speed ups. Apart from these
immediate possibilities, application-oriented optimization can also be applied, e.g. if the
approach is applied to a tracking scenario (in video), the number of particles maybe be
reduced, and stronger priors placed on detections and viewpoints based on temporal
regularities to achieve massive per-frame speed ups.

6.4.3 The big picture
The broader question that we investigate in this thesis is whether fine-grained 3D
modeling really helps scene-level reasoning. We rely on relatively large amounts of
manual annotation for definition and annotation of object parts. With massive amounts of
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visual data being freely available such as 3D CAD models (on free databases like Google
3D Warehouse), there is a potential to avoid the need for even minor offline human
interaction, and scale the system to far more complex and diverse scenes. Secondly,
such fine-grained models do not have to be confined to the domain of single image
understanding, and there is a great potential for such approaches in settings where
multiple views of the scene are available or where the scene is dynamic. We mention
these research directions in the following:

Scalability issues The approach presented in this thesis, as well as similar recent work
(Del Pero et al., 2013; Xiang and Savarese, 2013) requires significant amounts of manual
annotation effort (at the level of individual parts) and currently only handles a few object
classes. Thus an important future direction is to investigate approaches that reduce
annotation effort and another is to reduce the computational cost for large scale object
detection. Possibilities for reducing annotation effort include either simplifying registered
3D CAD models automatically downloaded from internet by making approaches such
as Zia et al. (2009) more efficient, or automatically inferring parts and correspondences
across CAD exemplars based on 3D geometry (Shalom et al., 2008). For large scale
object detection, we need to share both the appearance and geometric representation
among many object classes. The issue of appearance sharing has been treated in many
works, usually accomplished by either sharing of visual words among object classes
(Krempp et al., 2002; Torralba et al., 2004; Bart and Ullman, 2005; Opelt and Pinz, 2006;
Stark et al., 2009), by representing objects using a shared hierarchy of parts (Zhu et al.,
2010; Salakhutdinov et al., 2011), or by representing HOG-style filters trained separately
for different object classes as a sparse combination of basis filters (Song et al., 2012).
Thus the bigger challenge is to share the global geometry representation, since the part
detections themselves are noisy, and a prior geometry model acts as a strong regularizer
in such approaches. One idea is to investigate some form of hierarchical geometric
representation which follows a coarse-to-fine approach to estimate geometry shape.

A string of recent successes in learning complex concepts come from the revival of
“deep” learning approaches (Socher et al., 2012; Sermanet et al., 2013; Mnih et al.,
2013). One direction for future research would thus be to utilize the huge amounts of
visual data available online, such as video repositories or 3D animated movies, and
attempt to learn explicit 3D models of scene layouts and objects (perhaps segmented
and reconstructed on the basis of motion) in a deep learning framework, perhaps
bootstrapped with some knowledge of physics and most commonly occurring objects.

Multiple views and depth cameras. We exclusively consider the single view setting
in this thesis. However in many application such as robotics, augmented reality, and
surveillance, multiple views of the scene are available. While multiple views from a
monocular camera, or a view from a stereo or depth camera already provide more
information about the scene, w.r.t. to 3D geometry and otherwise occluded regions, there
still exists a huge potential for detailed semantic modeling to resolve correspondences,
reconstruct textureless and highly specular surfaces, and cluster together regions of
the scene as belonging to the same object. Researchers have begun exploring such
opportunities (Schindler and Bauer, 2003; Gee et al., 2008; Bao and Savarese, 2011;
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Silberman et al., 2012; Salas-Moreno et al., 2013; Fioraio and Stefano, 2013; Dame
et al., 2013; Satkin and Hebert, 2013), however much remains to be done in terms
of coherently combining 3D reconstruction with semantic recognition. One immediate
reward of incorporating our style of detailed semantic modeling into a visual SLAM
pipeline is a qualitatively rich estimate of the scene from the very first frame that sees
an unexplored portion of the environment. This single-frame estimate can then be
quantitatively improved as the environment is explored and new frame are seen, which
can be very beneficial for applications such as augmented reality or in service or disaster
response robots. Another interesting extension of such research would be in the domain
now called “life-long learning”, where semantic concepts, such as planar approximations,
detailed 3D geometric models, as well as physics modeling, could be combined to learn
new object instances and classes on the fly as well as different attributes of objects, like
affordances.

Richer motion models. While we have restricted our discussion to static scenes,
detailed dynamic scene understanding requires not only modeling the geometry of
objects at a high-resolution, but also their motion. Researchers have recently started
reasoning about the movements and dynamic interactions of objects. This work includes
detailed temporal modeling efforts such as “social” motion models (Pellegrini et al., 2009;
Luber et al., 2010; Baumgartner et al., 2013): modeling the interaction between moving
objects in time domain, e.g. a group of people moving together or a person dragging a
shopping cart. Similarly, recent dynamic scene understanding approaches (Ess et al.,
2009; Wojek et al., 2013; Geiger et al., 2011) leverage different motion models for
different object classes, e.g. constant velocity model for pedestrians, and mechanically
constrained motion model for cars. However, the underlying object shape models
remain rather coarse, which hinder a more deeper analysis of the motion. Detailed 3D
geometric models can enable fine-grained dynamic scene understanding by providing
precise viewpoint and high-resolution part estimates, which would feed into richer motion
models. These detections would allow to better estimate and constrain 3D motion: for
rigid objects like the motion of a shopping cart, and for articulated objects such as the
possible motions of car doors, a bicycle, or a human body. Thus an interesting direction
for future work is to investigate richer motion models that can best utilize the increased
expressiveness provided by detailed object models.
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